ترغب بنشر مسار تعليمي؟ اضغط هنا

We present a quantized quasinormal approach to rigorously describe coupled lossy resonators, and quantify the quantum coupling parameters as a function of distance between the resonators. We also make a direct connection between classical and quantum quasinormal modes parameters and theories, offering new and unique insights into coupled open cavity resonators. We present detailed calculations for coupled microdisk resonators and show striking interference effects that depend on the phase of the quasinormal modes, an effect that is also significant for high quality factor modes. Our results demonstrate that commonly adopted master equations for such systems are generally not applicable and we discuss the new physics that is captured using the quantized quasinormal mode coupling parameters and show how these relate to the classical mode parameters. Using these new insights, we also present several models to fix the failures of the dissipative Jaynes-Cummings type models for coupled cavity resonators. Additionally, we show how to improve the classical and quantum lossless mode models (i.e., using normal modes) by employing a non-diagonal mode expansion based on the knowledge of the quasinormal mode eigenfrequencies, and analytical coupled mode theory, to accurately capture the mode interference effects for high quality factors.
We demonstrate a fundamental breakdown of the photonic spontaneous emission (SE) formula derived from Fermis golden rule, in absorptive and amplifying media, where one assumes the SE rate scales with the local photon density of states, an approach of ten used in more complex, semiclassical nanophotonics simulations. Using a rigorous quantization of the macroscopic Maxwell equations in the presence of arbitrary linear media, we derive a corrected Fermis golden rule and master equation for a quantum two-level system (TLS) that yields a quantum pumping term and a modified decay rate that is net positive. We show rigorous numerical results of the temporal dynamics of the TLS for an example of two coupled microdisk resonators, forming a gain-loss medium, and demonstrate the clear failure of the commonly adopted formulas based solely on the local density of states.
We first present a quasinormal mode (QNM) theory for coupled loss-gain resonators working near an exceptional point. Assuming linear media, which can be fully quantified using the complex pole properties of the QNMs, we show how the QNMs yield a quan titatively good model to a full dipole spontaneous emission response in Maxwells equations at various spatial positions and frequencies (linear response). We also develop a highly accurate and intuitive QNM coupled-mode theory, which can be used to rigorously model such systems using only the QNMs of the bare resonators, where the hybrid QNMs of the complete system are automatically obtained. Near a lossy exceptional point, we analytically show how the QNMs yield a Lorentzian-like and a Lorentzian-squared-like response for the spontaneous emission lineshape, consistent with other works. However, using rigorous analytical and numerical solutions for microdisk resonators, we demonstrate that the general lineshapes are far richer than what has been previously predicted. Indeed, the classical picture of spontaneous emission can take on a wide range of positive and negative Purcell factors from the hybrid modes of the coupled loss-gain system. These negative Purcell factors are unphysical and signal a clear breakdown of the classical dipole picture of spontaneous emission in such media, though the negative local density of states is correct. We also show the rich spectral features of the Green function propagators, which can be used to model various physical observables. Second, we present a QNM approach to model index modulated ring resonators working near an exceptional point and show unusual chiral power flow from linearly polarized emitters, in agreement with recent experiments, which is quantitatively explained without invoking the interpretation of a missing dimension (the Jordan vector) and a decoupling from the cavity eigenmodes.
We provide theory and formal insight on the Green function quantization method for absorptive and dispersive spatial-inhomogeneous media in the context of dielectric media. We show that a fundamental Green function identity, which appears, e.g., in t he fundamental commutation relation of the electromagnetic fields, is also valid in the limit of non-absorbing media. We also demonstrate how the zero-point field fluctuations yields a non-vanishing surface term in configurations without absorption, when using a more formal procedure of the Green function quantization method. We then apply the presented method to a recently developed theory of photon quantization using quasinormal modes [Franke et al., Phys. Rev. Lett. 122, 213901 (2019)] for finite nanostructures embedded in a lossless background medium. We discuss the strict dielectric limit of the commutation relations of the quasinormal mode operators and present different methods to obtain them, connected to the radiative loss for non-absorptive but open resonators. We show exemplary calculations of a fully three-dimensional photonic crystal beam cavity, including the lossless limit, which supports a single quasinormal mode and discuss the limits of the commutation relation for vanishing damping (no material loss and no radiative loss).
We employ a recently developed quantization scheme for quasinormal modes (QNMs) to study a nonperturbative open cavity-QED system consisting of a hybrid metal-dielectric resonator coupled to a quantum emitter. This hybrid cavity system allows one to explore the complex coupling between a low $Q$ (quality factor) resonance and a high $Q$ resonance, manifesting in a striking Fano resonance, an effect that is not captured by traditional quantization schemes using normal modes or a Jaynes-Cummings (JC) type model. The QNM quantization approach rigorously includes dissipative coupling between the QNMs, and is supplemented with generalized input-output relations for the output electric field operator for multiple modes in the system, and correlation functions outside the system. The role of the dissipation-induced mode coupling is explored in the strong coupling regime between the photons and emitter beyond the first rung of the JC dressed-state ladder. Important differences in the quantum master equation and input-output relations between the QNM quantum model and phenomenological dissipative JC models are found. In a second step, numerical results for the Fock distributions and system as well as output correlation functions obtained from the quantized QNM model for the hybrid structure are compared with results from a phenomenological approach. We demonstrate explicitly how the quantized QNM model manifests in multiphoton quantum correlations beyond what is predicted by the usual JC models.
We describe an efficient near-field to far-field transformation for optical quasinormal modes, which are the dissipative modes of open cavities and plasmonic resonators with complex eigenfrequencies. As an application of the theory, we show how one c an compute the reservoir modes (or regularized quasinormal modes) outside the resonator, which are essential to use in both classical and quantum optics. We subsequently demonstrate how to efficiently compute the quantum optical parameters necessary in the theory of quantized quasinormal modes [Franke et al., Phys. Rev. Lett. 122, 213901 (2019)]. To confirm the accuracy of our technique, we directly compare with a Dyson equation approach currently used in the literature (in regimes where this is possible), and demonstrate several order of magnitude improvement for the calculation run times. We also introduce an efficient pole approximation for computing the quantized quasinormal mode parameters, since they require an integration over a range of frequencies. Using this approach, we show how to compute regularized quasinormal modes and quantum optical parameters for a full 3D metal dimer in under one minute on a standard desktop computer. Our technique is exemplified by studying the quasinormal modes of metal dimers and a hybrid structure consisting of a gold dimer on top of a photonic crystal beam. In the latter example, we show how to compute the quantum optical parameters that describe a pronounced Fano resonance, using structural geometries that cannot practically be solved using a Dyson equation approach. All calculations for the spontaneous emission rates are confirmed with full-dipole calculations in Maxwells equations and are shown to be in excellent agreement.
The Beijing Faint Object Spectrograph and Camera (BFOSC) is one of the most important instruments of the 2.16-m telescope of the Xinglong Observatory. Every year there are ~ 20 SCI-papers published based on the observational data of this telescope. I n this work, we have systemically measured the total efficiency of the BFOSC of the 2.16-m reflector, based on the observations of two ESO flux standard stars. We have obtained the total efficiencies of the BFOSC instrument of different grisms with various slit widths in almost all ranges, and analysed the factors which effect the efficiency of telescope and spectrograph. For the astronomical observers, the result will be useful for them to select a suitable slit width, depending on their scientific goals and weather conditions during the observation; For the technicians, the result will help them systemically find out the real efficiency of telescope and spectrograph, and further to improve the total efficiency and observing capacity of the telescope technically.
Context. White dwarf-main sequence (WDMS) binaries are used to study several different important open problems in modern astrophysics. Aims. The Sloan Digital Sky Survey (SDSS) identified the largest catalogue of WDMS binaries currently known. Howe ver, this sample is seriously affected by selection effects and the population of systems containing cool white dwarfs and early-type companions is under-represented.Here we search for WDMS binaries within the spectroscopic data release 1 of the LAMOST (Large sky Area Multi-Object fiber Spectroscopic Telescope) survey. LAMOST and SDSS follow different target selection algorithms. Hence, LAMOST WDMS binaries may be drawn from a different parent population and thus help in overcoming the selection effects incorporated by SDSS on the current observed population. Methods. We develop a fast and efficient routine based on the wavelet transform to identify LAMOST WDMS binaries containing a DA white dwarf and a M dwarf companion, and apply a decomposition/fitting routine to their LAMOST spectra to estimate their distances and measure their stellar parameters, namely the white dwarf effective temperatures, surface gravities and masses, and the secondary star spectral types. Results. We identify 121 LAMOST WDMS binaries, 80 of which are new discoveries, and estimate the sample to be sim90 per cent complete. The LAMOST and SDSS WDMS binaries are found to be statistically different. However, this result is not due to the different target selection criteria of both surveys, but likely a simple consequence of the different observing conditions. Thus, the LAMOST population is found at considerably shorter distances (sim50-450 pc) and is dominated by systems containing early-type companions and hot white dwarfs. (abridged)
147 - Juanjuan Ren , Ali Luo , Yinbi Li 2013
We present a set of white dwarf-main sequence (WDMS) binaries identified spectroscopically from the Large sky Area Multi-Object fiber Spectroscopic Telescope (LAMOST, also called the Guo Shou Jing Telescope) pilot survey. We develop a color selection criteria based on what is so far the largest and most complete Sloan Digital Sky Survey (SDSS) DR7 WDMS binary catalog and identify 28 WDMS binaries within the LAMOST pilot survey. The primaries in our binary sample are mostly DA white dwarfs except for one DB white dwarf. We derive the stellar atmospheric parameters, masses, and radii for the two components of 10 of our binaries. We also provide cooling ages for the white dwarf primaries as well as the spectral types for the companion stars of these 10 WDMS binaries. These binaries tend to contain hot white dwarfs and early-type companions. Through cross-identification, we note that nine binaries in our sample have been published in the SDSS DR7 WDMS binary catalog. Nineteen spectroscopic WDMS binaries identified by the LAMOST pilot survey are new. Using the 3$sigma$ radial velocity variation as a criterion, we find two post-common-envelope binary candidates from our WDMS binary sample.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا