ترغب بنشر مسار تعليمي؟ اضغط هنا

We report a first-principles Wannier function study of the electronic structure of PdTe. Its electronic structure is found to be a broad three-dimensional Fermi surface with highly reduced correlations effects. In addition, the higher filling of the Pd $d$-shell, its stronger covalency resulting from the closer energy of the Pd-$d$ and Te-$p$ shells, and the larger crystal field effects of the Pd ion due to its near octahedral coordination all serve to weaken significantly electronic correlations in the particle-hole (spin, charge, and orbital) channel. In comparison to the Fe Chalcogenide e.g., FeSe, we highlight the essential features (quasi-two-dimensionality, proximity to half-filling, weaker covalency, and higher orbital degeneracy) of Fe-based high-temperature superconductors.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا