ترغب بنشر مسار تعليمي؟ اضغط هنا

We study Lyapunov vectors (LVs) corresponding to the largest Lyapunov exponents in systems with spatiotemporal chaos. We focus on characteristic LVs and compare the results with backward LVs obtained via successive Gram-Schmidt orthonormalizations. S ystems of a very different nature such as coupled-map lattices and the (continuous-time) Lorenz `96 model exhibit the same features in quantitative and qualitative terms. Additionally we propose a minimal stochastic model that reproduces the results for chaotic systems. Our work supports the claims about universality of our earlier results [I. G. Szendro et al., Phys. Rev. E 76, 025202(R) (2007)] for a specific coupled-map lattice.
We show that time dependent couplings may lead to nontrivial scaling properties of the surface fluctuations of the asymptotic regime in non-equilibrium kinetic roughening models . Three typical situations are studied. In the case of a crossover betwe en two different rough regimes, the time-dependent coupling may result in anomalous scaling for scales above the crossover length. In a different setting, for a crossover from a rough to either a flat or damping regime, the time dependent crossover length may conspire to produce a rough surface, despite the most relevant term tends to flatten the surface. In addition, our analysis sheds light into an existing debate in the problem of spontaneous imbibition, where time dependent couplings naturally arise in theoretical models and experiments.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا