ترغب بنشر مسار تعليمي؟ اضغط هنا

We present a study of 15 new brown dwarfs belonging to the $sim7$ Myr old 25 Orionis group and Orion OB1a sub-association with spectral types between M6 and M9 and estimated masses between $sim0.07$M$_odot$ and $sim0.01$ M$_odot$. By comparing them t hrough a Bayesian method with low mass stars ($0.8lesssim$ M/M$_odotlesssim0.1$) from previous works in the 25 Orionis group, we found statistically significant differences in the number fraction of classical T Tauri stars, weak T Tauri stars, class II, evolved discs and purely photospheric emitters at both sides of the sub-stellar mass limit. Particularly we found a fraction of $3.9^{+2.4}_{-1.6}~%$ low mass stars classified as CTTS and class II or evolved discs, against a fraction of $33.3^{+10.8}_{-9.8}~%$ in the sub-stellar mass domain. Our results support the suggested scenario in which the dissipation of discs is less efficient for decreasing mass of the central object.
We report the initial results of a large-scale optical-near infrared survey to extend the known young population of the entire Orion star-forming region down to the substellar domain. Using deep optical I-band photometry and data from the 2MASS surve y, we selected candidates across ~14.8 deg^2 in the ~8 Myr old Ori OB1a subassociation and over ~6.7 deg^2 in the Ori OB1b subassociation (age ~3), with completeness down to 0.05Mo and 0.072Mo respectively. We obtained low resolution optical spectra for a subsample of 4 candidates in Ori OB1a and 26 in Ori OB1b; as a result we confirmed 3 new members in Ori OB1a, one of which is substellar, and 19 new members in Ori OB1b, out of which 7 are at the substellar limit and 5 are substellar. We looked into the presence of accretion signatures by measuring the strength of the Ha line in emission. Accordingly, we classified the new members as having Classical T-Tauri star (CTTS) or Weak Lined T Tauri star-like (WTTS) nature. We found that all the new members confirmed in Ori OB1a are WTTSs, while 39 +25/-22 % of the new members in Ori OB1b exhibit CTTS-like behavior, suggestive of ongoing accretion from a circum(sub)stellar disk. Additionally we found that none of the members confirmed in OB1a show near-IR color excess while 38 +26/-21 % of OB1b members show H-K color excess. These results are consistent with recent findings for low mass young stars in Orion OB1. The similarity in CTTS-like properties and near-IR excess across the substellar boundary gives support to the idea of a common formation mechanism for low mass stars and at least the most massive brown dwarfs. Finally, we remark the discovery of two new members classified as CTTSs, both exhibiting W(Ha) < -140 A, suggesting significant ongoing accretion.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا