ترغب بنشر مسار تعليمي؟ اضغط هنا

Current-induced dynamics in spin valves including composite free layer with antiferromagnetic interlayer exchange coupling is studied theoretically within the diffusive transport regime. We show that current-induced dynamics of a synthetic antiferrom agnet is significantly different from dynamics of a synthetic ferrimagnet. From macrospin simulations we obtain conditions for switching the composite free layer, as well as for appearance of various self-sustained dynamical modes. Numerical simulations are compared with simple analytical models of critical current based on linearized Landau-Lifshitz-Gilbert equation.
Spin-transfer torque and current induced spin dynamics in spin-valve nanopillars with the free magnetic layer located between two magnetic films of fixed magnetic moments is considered theoretically. The spin-transfer torque in the limit of diffusive spin transport is calculated as a function of magnetic configuration. It is shown that non-collinear magnetic configuration of the outermost magnetic layers has a strong influence on the spin torque and spin dynamics of the central free layer. Employing macrospin simulations we make some predictions on the free layer spin dynamics in spin valves composed of various magnetic layers. We also present a formula for critical current in non-collinear magnetic configurations, which shows that the magnitude of critical current can be several times smaller than that in typical single spin valves.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا