ترغب بنشر مسار تعليمي؟ اضغط هنا

PRAXIS is a second generation instrument that follows on from GNOSIS, which was the first instrument using fibre Bragg gratings for OH background suppression. The Bragg gratings reflect the NIR OH lines while being transparent to light between the li nes. This gives a much higher signal-noise ratio at low resolution but also at higher resolutions by removing the scattered wings of the OH lines. The specifications call for high throughput and very low thermal and detector noise so that PRAXIS will remain sky noise limited. The optical train is made of fore-optics, an IFU, a fibre bundle, the Bragg grating unit, a second fibre bundle and a spectrograph. GNOSIS used the pre-existing IRIS2 spectrograph while PRAXIS will use a new spectrograph specifically designed for the fibre Bragg grating OH suppression and optimised for 1470 nm to 1700 nm (it can also be used in the 1090 nm to 1260 nm band by changing the grating and refocussing). This results in a significantly higher transmission due to high efficiency coatings, a VPH grating at low incident angle and low absorption glasses. The detector noise will also be lower. Throughout the PRAXIS design special care was taken at every step along the optical path to reduce thermal emission or stop it leaking into the system. This made the spectrograph design challenging because practical constraints required that the detector and the spectrograph enclosures be physically separate by air at ambient temperature. At present, the instrument uses the GNOSIS fibre Bragg grating OH suppression unit. We intend to soon use a new OH suppression unit based on multicore fibre Bragg gratings which will allow increased field of view per fibre. Theoretical calculations show that the gain in interline sky background signal-noise ratio over GNOSIS may very well be as high as 9 with the GNOSIS OH suppression unit and 17 with the multicore fibre OH suppression unit.
From two very simple axioms: (1) that AGN activity traces spheroid formation, and (2) that the cosmic star-formation history is dominated by spheroid formation at high redshift, we derive simple expressions for the star-formation histories of spheroi ds and discs, and their implied metal enrichment histories. Adopting a Baldry-Glazebrook initial mass function we use these relations and apply PEGASE.2 to predict the z=0 cosmic spectral energy distributions (CSEDs) of spheroids and discs. The model predictions compare favourably to the dust-corrected CSED recently reported by the Galaxy And Mass Assembly (GAMA) team from the FUV through to the K band. The model also provides a reasonable fit to the total stellar mass contained within spheroid and disc structures as recently reported by the Millennium Galaxy Catalogue team. Three interesting inferences can be made following our axioms: (1) there is a transition redshift at z ~ 1.7 at which point the Universe switches from what we refer to as hot mode evolution (i.e., spheroid formation/growth via mergers and/or collapse) to what we term cold mode evolution (i.e., disc formation/growth via gas infall and minor mergers); (2) there is little or no need for any pre-enrichment prior to the main phase of star-formation; (3) in the present Universe mass-loss is fairly evenly balanced with star-formation holding the integrated stellar mass density close to a constant value. The model provides a simple prediction of the energy output from spheroid and disc projenitors, the build-up of spheroid and disc mass, and the mean metallicity enrichment of the Universe.
GNOSIS is a prototype astrophotonic instrument that utilizes OH suppression fibres consisting of fibre Bragg gratings and photonic lanterns to suppress the 103 brightest atmospheric emission doublets between 1.47-1.7 microns. GNOSIS was commissioned at the 3.9-meter Anglo-Australian Telescope with the IRIS2 spectrograph to demonstrate the potential of OH suppression fibres, but may be potentially used with any telescope and spectrograph combination. Unlike previous atmospheric suppression techniques GNOSIS suppresses the lines before dispersion and in a manner that depends purely on wavelength. We present the instrument design and report the results of laboratory and on-sky tests from commissioning. While these tests demonstrated high throughput and excellent suppression of the skylines by the OH suppression fibres, surprisingly GNOSIS produced no significant reduction in the interline background and the sensitivity of GNOSIS and IRIS2 is about the same as IRIS2. It is unclear whether the lack of reduction in the interline background is due to physical sources or systematic errors as the observations are detector noise-dominated. OH suppression fibres could potentially impact ground-based astronomy at the level of adaptive optics or greater. However, until a clear reduction in the interline background and the corresponding increasing in sensitivity is demonstrated optimized OH suppression fibres paired with a fibre-fed spectrograph will at least provide a real benefits at low resolving powers.
We present the first scientific results from the Sydney-AAO Multi-Object IFS (SAMI) at the Anglo-Australian Telescope. This unique instrument deploys 13 fused fibre bundles (hexabundles) across a one-degree field of view allowing simultaneous spatial ly-resolved spectroscopy of 13 galaxies. During the first SAMI commissioning run, targeting a single galaxy field, one object (ESO 185-G031) was found to have extended minor axis emission with ionisation and kinematic properties consistent with a large-scale galactic wind. The importance of this result is two-fold: (i) fibre bundle spectrographs are able to identify low-surface brightness emission arising from extranuclear activity; (ii) such activity may be more common than presently assumed because conventional multi-object spectrographs use single-aperture fibres and spectra from these are nearly always dominated by nuclear emission. These early results demonstrate the extraordinary potential of multi-object hexabundle spectroscopy in future galaxy surveys.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا