ترغب بنشر مسار تعليمي؟ اضغط هنا

Computational intelligence is broadly defined as biologically-inspired computing. Usually, inspiration is drawn from neural systems. This article shows how to analyze neural systems using information theory to obtain constraints that help identify th e algorithms run by such systems and the information they represent. Algorithms and representations identified information-theoretically may then guide the design of biologically inspired computing systems (BICS). The material covered includes the necessary introduction to information theory and the estimation of information theoretic quantities from neural data. We then show how to analyze the information encoded in a system about its environment, and also discuss recent methodological developments on the question of how much information each agent carries about the environment either uniquely, or redundantly or synergistically together with others. Last, we introduce the framework of local information dynamics, where information processing is decomposed into component processes of information storage, transfer, and modification -- locally in space and time. We close by discussing example applications of these measures to neural data and other complex systems.
50 - Joseph T. Lizier 2014
Complex systems are increasingly being viewed as distributed information processing systems, particularly in the domains of computational neuroscience, bioinformatics and Artificial Life. This trend has resulted in a strong uptake in the use of (Shan non) information-theoretic measures to analyse the dynamics of complex systems in these fields. We introduce the Java Information Dynamics Toolkit (JIDT): a Google code project which provides a standalone, (GNU GPL v3 licensed) open-source code implementation for empirical estimation of information-theoretic measures from time-series data. While the toolkit provides classic information-theoretic measures (e.g. entropy, mutual information, conditional mutual information), it ultimately focusses on implementing higher-level measures for information dynamics. That is, JIDT focusses on quantifying information storage, transfer and modification, and the dynamics of these operations in space and time. For this purpose, it includes implementations of the transfer entropy and active information storage, their multivariate extensions and local or pointwise variants. JIDT provides implementations for both discrete and continuous-valued data for each measure, including various types of estimator for continuous data (e.g. Gaussian, box-kernel and Kraskov-Stoegbauer-Grassberger) which can be swapped at run-time due to Javas object-oriented polymorphism. Furthermore, while written in Java, the toolkit can be used directly in MATLAB, GNU Octave, Python and other environments. We present the principles behind the code design, and provide several examples to guide users.
The nature of distributed computation has often been described in terms of the component operations of universal computation: information storage, transfer and modification. We review the first complete framework that quantifies each of these individ ual information dynamics on a local scale within a system, and describes the manner in which they interact to create non-trivial computation where the whole is greater than the sum of the parts. We describe the application of the framework to cellular automata, a simple yet powerful model of distributed computation. This is an important application, because the framework is the first to provide quantitative evidence for several important conjectures about distributed computation in cellular automata: that blinkers embody information storage, particles are information transfer agents, and particle collisions are information modification events. The framework is also shown to contrast the computations conducted by several well-known cellular automata, highlighting the importance of information coherence in complex computation. The results reviewed here provide important quantitative insights into the fundamental nature of distributed computation and the dynamics of complex systems, as well as impetus for the framework to be applied to the analysis and design of other systems.
We present a measure of local information transfer, derived from an existing averaged information-theoretical measure, namely transfer entropy. Local transfer entropy is used to produce profiles of the information transfer into each spatiotemporal po int in a complex system. These spatiotemporal profiles are useful not only as an analytical tool, but also allow explicit investigation of different parameter settings and forms of the transfer entropy metric itself. As an example, local transfer entropy is applied to cellular automata, where it is demonstrated to be a novel method of filtering for coherent structure. More importantly, local transfer entropy provides the first quantitative evidence for the long-held conjecture that the emergent traveling coherent structures known as particles (both gliders and domain walls, which have analogues in many physical processes) are the dominant information transfer agents in cellular automata.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا