ترغب بنشر مسار تعليمي؟ اضغط هنا

Recent years have seen a resurgence of interest in using Virtual Reality (VR) technology to benefit instruction, especially in physics and related subjects. As VR devices improve and become more widely available, there remains a number of unanswered questions regarding the impact of VR on student learning and how best to use this technology in the classroom. On the topic of electrostatics, for example, a large, controlled, randomized study performed by Smith et al. 2017cite{smith17}, found that VR-based instruction had an overall negligible impact on student learning compared to videos or images. However, they did find a strong trend for students who reported frequent video game play to learn better from VR than other media. One possible interpretation of this result is that extended videogame play provides a kind of training that enables a student to learn more comfortably in the virtual environment. In the present work we consider if a VR training activity that is unrelated to electrostatics can help prepare students to learn electrostatics from subsequent VR instruction. We find that preliminary VR training leads to a small but statistically significant improvement in student performance on our electrostatics assessment. We also find that student reported game play is still correlated with higher scores on this metric.
Incorporating computer programming exercises in introductory physics is a delicate task that involves a number of choices that may have a strong affect on student learning. We present an approach that speaks to a number of common concerns that arise when using programming exercises in introductory physics classes where most students are absolute beginner programmers. These students need an approach that is (1) simple, involving 75 or fewer lines of well-commented code, (2) easy to use, with browser-based coding tools, (3) interactive, with a high frame rate to give a video-game like feel, (4) step-by-step with the ability to interact with intermediate stages of the correct program and (5) thoughtfully integrated into the physics curriculum, for example, by illustrating velocity and acceleration vectors throughout. We present a set of hour-long activities for classical mechanics that resemble well-known games such as asteroids, lunar lander and angry birds. Survey results from the first activity from four semesters of introductory physics classes at OSU in which a high percentage of the students are weak or absolute beginner programmers seems to confirm that the level of difficulty is appropriate for this level and that the students enjoy the activity. These exercises are available for general use at http://compadre.org/PICUP In the future we plan to assess conceptual knowledge using an animated version of the Force Concept Inventory originally developed by M. Dancy.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا