ترغب بنشر مسار تعليمي؟ اضغط هنا

A few binary systems display High Energy (100 MeV - 100 GeV) and/or Very High Energy (> 100 GeV) gamma-ray emission. These systems also display non-thermal radio emission that can be resolved with long-baseline radio interferometers, revealing the pr esence of outflows. It is expected that at very low frequencies the synchrotron radio emission covers larger angular scales than has been reported up to now. Here we present preliminary results of the first deep radio observations of the gamma-ray binary LS I +61 303 with LOFAR, which is sensitive to extended structures on arcsecond to arcminute scales.
91 - J. Moldon 2008
LS 5039 is one of the four TeV emitting X-ray binaries detected up to now. The powering source of its multi-wavelength emission can be accretion in a microquasar scenario or wind interaction in a young non-accreting pulsar scenario. These two scenari os predict different morphologic and peak position changes along the orbital cycle of 3.9 days, which can be tested at milliarcsecond scales using VLBI techniques. Here we present a campaign of 5 GHz VLBA observations conducted in June 2000 (2 runs five days apart). The results show a core component with a constant flux density, and a fast change in the morphology and the position angle of the elongated extended emission, but maintaining a stable flux density. These results are difficult to fit comfortably within a microquasar scenario, whereas they appear to be compatible with the predicted behavior for a non-accreting pulsar.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا