ترغب بنشر مسار تعليمي؟ اضغط هنا

We prove the equivalence between the notion of Wasserstein gradient flow for a one-dimensional nonlocal transport PDE with attractive/repulsive Newtonian potential on one side, and the notion of entropy solution of a Burgers-type scalar conservation law on the other. The solution of the former is obtained by spatially differentiating the solution of the latter. The proof uses an intermediate step, namely the $L^2$ gradient flow of the pseudo-inverse distribution function of the gradient flow solution. We use this equivalence to provide a rigorous particle-system approximation to the Wasserstein gradient flow, avoiding the regularization effect due to the singularity in the repulsive kernel. The abstract particle method relies on the so-called wave-front-tracking algorithm for scalar conservation laws. Finally, we provide a characterization of the sub-differential of the functional involved in the Wasserstein gradient flow.
A numerical study is presented to analyze the thermal mechanisms of unsteady, supersonic granular flow, by means of hydrodynamic simulations of the Navier-Stokes granular equations. For this purpose a paradigmatic problem in granular dynamics such as the Faraday instability is selected. Two different approaches for the Navier-Stokes transport coefficients for granular materials are considered, namely the traditional Jenkins-Richman theory for moderately dense quasi-elastic grains, and the improved Garzo-Dufty-Lutsko theory for arbitrary inelasticity, which we also present here. Both solutions are compared with event-driven simulations of the same system under the same conditions, by analyzing the density, the temperature and the velocity field. Important differences are found between the two approaches leading to interesting implications. In particular, the heat transfer mechanism coupled to the density gradient which is a distinctive feature of inelastic granular gases, is responsible for a major discrepancy in the temperature field and hence in the diffusion mechanisms.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا