ترغب بنشر مسار تعليمي؟ اضغط هنا

Cellular-connected unmanned aerial vehicles (UAVs) have recently attracted a surge of interest in both academia and industry. Understanding the air-to-ground (A2G) propagation channels is essential to enable reliable and/or high-throughput communicat ions for UAVs and protect the ground user equipments (UEs). In this contribution, a recently conducted measurement campaign for the A2G channels is introduced. A uniform circular array (UCA) with 16 antenna elements was employed to collect the downlink signals of two different Long Term Evolution (LTE) networks, at the heights of 0-40m in three different, namely rural, urban and industrial scenarios. The channel impulse responses (CIRs) have been extracted from the received data, and the spatial/angular parameters of the multipath components in individual channels were estimated according to a high-resolution-parameter estimation (HRPE) principle. Based on the HRPE results, clusters of multipath components were further identified. Finally, comprehensive spatial channel characteristics were investigated in the composite and cluster levels at different heights in the three scenarios.
Due to the decrease in cost, size and weight, acp{UAV} are becoming more and more popular for general-purpose civil and commercial applications. Provision of communication services to acp{UAV} both for user data and control messaging by using off-the -shelf terrestrial cellular deployments introduces several technical challenges. In this paper, an approach to the air-to-ground channel characterization for low-height acp{UAV} based on an extensive measurement campaign is proposed, giving special attention to the comparison of the results when a typical directional antenna for network deployments is used and when a quasi-omnidirectional one is considered. Channel characteristics like path loss, shadow fading, root mean square delay and Doppler frequency spreads and the K-factor are statistically characterized for different suburban scenarios.
In this paper, a recently conducted measurement campaign for unmanned-aerial-vehicle (UAV) channels is introduced. The downlink signals of an in-service long-time-evolution (LTE) network which is deployed in a suburban scenario were acquired. Five ho rizontal and five vertical flight routes were considered. The channel impulse responses (CIRs) are extracted from the received data by exploiting the cell specific signals (CRSs). Based on the CIRs, the parameters of multipath components (MPCs) are estimated by using a high-resolution algorithm derived according to the space-alternating generalized expectation-maximization (SAGE) principle. Based on the SAGE results, channel characteristics including the path loss, shadow fading, fast fading, delay spread and Doppler frequency spread are thoroughly investigated for different heights and horizontal distances, which constitute a stochastic model.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا