ترغب بنشر مسار تعليمي؟ اضغط هنا

We review attempts that have been made towards understanding the computational properties and mechanisms of input-driven dynamical systems like RNNs, and reservoir computing networks in particular. We provide details on methods that have been develop ed to give quantitative answers to the questions above. Following this, we show how self-organization may be used to improve reservoirs for better performance, in some cases guided by the measures presented before. We also present a possible way to quantify task performance using an information-theoretic approach, and finally discuss promising future directions aimed at a better understanding of how these systems perform their computations and how to best guide self-organized processes for their optimization.
Information theory and the framework of information dynamics have been used to provide tools to characterise complex systems. In particular, we are interested in quantifying information storage, information modification and information transfer as ch aracteristic elements of computation. Although these quantities are defined for autonomous dynamical systems, information dynamics can also help to get a wholistic understanding of input-driven systems such as neural networks. In this case, we do not distinguish between the system itself, and the effects the input has to the system. This may be desired in some cases, but it will change the questions we are able to answer, and is consequently an important consideration, for example, for biological systems which perform non-trivial computations and also retain a short-term memory of past inputs. Many other real world systems like cortical networks are also heavily input-driven, and application of tools designed for autonomous dynamic systems may not necessarily lead to intuitively interpretable results. The aim of our work is to extend the measurements used in the information dynamics framework for input-driven systems. Using the proposed input-corrected information storage we hope to better quantify system behaviour, which will be important for heavily input-driven systems like artificial neural networks to abstract from specific benchmarks, or for brain networks, where intervention is difficult, individual components cannot be tested in isolation or with arbitrary input data.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا