ترغب بنشر مسار تعليمي؟ اضغط هنا

We have conducted a spectroscopic survey of the inner regions of the Sagittarius (Sgr) dwarf galaxy using the AAOmega spectrograph on the Anglo-Australian Telescope. We determine radial velocities for over 1800 Sgr star members in 6 fields that cover an area 18.84 deg^2, with a typical accuracy of ~2 km/s. Motivated by recent numerical models of the Sgr tidal stream that predict a substantial amount of rotation in the dwarf remnant core, we compare the kinematic data against N-body models that simulate the stream progenitor as (i) a pressure-supported, mass-follows-light system, and (ii) a late-type, rotating disc galaxy embedded in an extended dark matter halo. We find that the models with little, or no intrinsic rotation clearly yield a better match to the mean line-of-sight velocity in all surveyed fields, but fail to reproduce the shape of the line-of-sight velocity distribution. This result rules out models wherein the prominent bifurcation observed in the leading tail of the Sgr stream was caused by a transfer from intrinsic angular momentum from the progenitor satellite into the tidal stream. It also implies that the trajectory of the young tidal tails has not been affected by internal rotation in the progenitor system. Our finding indicates that new, more elaborate dynamical models, in which the dark and luminous components are treated independently, are necessary for simultaneously reproducing both the internal kinematics of the Sgr dwarf and the available data for the associated tidal stream.
We present an extragalactic perspective of an extended stellar tidal stream wrapping around the edge-on, spiral galaxy NGC 5907. Our deep images reveal for the first time a large scale complex of arcing loops that is an excellent example of how a low -mass satellite accretion can produce an interwoven, rosette-like structure of debris dispersed in the halo of its host galaxy. The existence of this structure, which has probably formed and survived for several Gigayears, confirms that halos of spiral galaxies in the Local Universe may still contain a significant number of galactic fossils from their hierarchical formation. To examine the validity of the external accretion scenario, we present N-body simulations of the tidal disruption of a dwarf galaxy-like system in a disk galaxy plus dark halo potential that demonstrate that most of the observed tidal features observed in NGC 5907 can be explained by a single accretion event. Unfortunately, with no kinematic data and only the projected geometry of the stream as constraint, the parameters of our model are considerably degenerate and, for now, must be considered illustrative only. Interestingly, NGC 5907 has long been considered a prototypical example of a warped spiral in relative isolation. The presence of an extended tidal stream challenges this picture and suggests that the gravitational perturbations induced by the stream progenitor may be the cause for the warp. The detection of an old, complex tidal stream in a nearby galaxy with rather modest instrumentation points to the viability of surveys to find extragalactic tidal substructures around spiral galaxies in the Local Volume (< 15 Mpc) -- with the prospect of obtaining a census with enough statistical significance to be compared with cosmological simulations.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا