ترغب بنشر مسار تعليمي؟ اضغط هنا

We present the self-consistent treatment of the simplest, nontrivial, self-gravitating system of degenerate neutrons, protons and electrons in $beta$-equilibrium within relativistic quantum statistics and the Einstein-Maxwell equations. The impossibi lity of imposing the condition of local charge neutrality on such systems is proved, consequently overcoming the traditional Tolman-Oppenheimer-Volkoff treatment. We emphasize the crucial role of imposing the constancy of the generalized Fermi energies. A new approach based on the coupled system of the general relativistic Thomas-Fermi-Einstein-Maxwell equations is presented and solved. We obtain an explicit solution fulfilling global and not local charge neutrality by solving a sophisticated eigenvalue problem of the general relativistic Thomas-Fermi equation. The value of the Coulomb potential at the center of the configuration is $eV(0)simeq m_pi c^2$ and the system is intrinsically stable against Coulomb repulsion in the proton component. This approach is necessary, but not sufficient, when strong interactions are introduced.
The isothermal Tolman condition and the constancy of the Klein potentials originally expressed for the sole gravitational interaction in a single fluid are here generalized to the case of a three quantum fermion fluid duly taking into account the str ong, electromagnetic, weak and gravitational interactions. The set of constitutive equations including the Einstein-Maxwell-Thomas-Fermi equations as well as the ones corresponding to the strong interaction description are here presented in the most general relativistic isothermal case. This treatment represents an essential step to correctly formulate a self-consistent relativistic field theoretical approach of neutron stars.
The recent formulation of the relativistic Thomas-Fermi model within the Feynman-Metropolis-Teller theory for compressed atoms is applied to the study of general relativistic white dwarf equilibrium configurations. The equation of state, which takes into account the beta-equilibrium, the nuclear and the Coulomb interactions between the nuclei and the surrounding electrons, is obtained as a function of the compression by considering each atom constrained in a Wigner-Seitz cell. The contribution of quantum statistics, weak, nuclear, and electromagnetic interactions is obtained by the determination of the chemical potential of the Wigner-Seitz cell. The further contribution of the general relativistic equilibrium of white dwarf matter is expressed by the simple formula $sqrt{g_{00}}mu_{rm ws}$= constant, which links the chemical potential of the Wigner-Seitz cell $mu_{rm ws}$ with the general relativistic gravitational potential $g_{00}$ at each point of the configuration. The configuration outside each Wigner-Seitz cell is strictly neutral and therefore no global electric field is necessary to warranty the equilibrium of the white dwarf. These equations modify the ones used by Chandrasekhar by taking into due account the Coulomb interaction between the nuclei and the electrons as well as inverse beta-decay. They also generalize the work of Salpeter by considering a unified self-consistent approach to the Coulomb interaction in each Wigner-Seitz cell. The consequences on the numerical value of the Chandrasekhar-Landau mass limit as well as on the mass-radius relation of $^4$He, $^{12}$C, $^{16}$O and $^{56}$Fe white dwarfs are presented. All these effects should be taken into account in processes requiring a precision knowledge of the white dwarf parameters.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا