ترغب بنشر مسار تعليمي؟ اضغط هنا

In this paper we investigate an implementation of a quantum gate for quantum information processing in a system of quantum dots in an optical cavity manipulated by collinear laser fields. For simplicity we give theoretical and numerical results only for simulations of two quantum dots in a cavity interacting with two collinear fields. Extension to the system of many quantum dots in a cavity can be done in similar manner as the two dots system. It is shown that due to the collinear fields are used, a two qubit gate operation can be acheived by choosing properly detunings and amplitudes of the collinear fields.
Farhi and others have introduced the notion of solving NP problems using adiabatic quantum com- puters. We discuss an application of this idea to the problem of integer factorization, together with a technique we call gluing which can be used to buil d adiabatic models of interesting problems. Although adiabatic quantum computers already exist, they are likely to be too small to directly tackle problems of interesting practical sizes for the foreseeable future. Therefore, we discuss techniques for decomposition of large problems, which permits us to fully exploit such hardware as may be available. Numerical re- sults suggest that even simple decomposition techniques may yield acceptable results with subexponential overhead, independent of the performance of the underlying device.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا