ترغب بنشر مسار تعليمي؟ اضغط هنا

We present the first 1.3 mm (230 GHz) very long baseline interferometry model image of an AGN jet using closure phase techniques with a four-element array. The model image of the quasar 1924-292 was obtained with four telescopes at three observatorie s: the James Clerk Maxwell Telescope (JCMT) on Mauna Kea in Hawaii, the Arizona Radio Observatorys Submillimeter Telescope (SMT) in Arizona, and two telescopes of the Combined Array for Research in Millimeterwave Astronomy (CARMA) in California in April 2009. With the greatly improved resolution compared with previous observations and robust closure phase measurement, the inner jet structure of 1924-292 was spatially resolved. The inner jet extends to the northwest along a position angle of $-53^circ$ at a distance of 0.38,mas from the tentatively identified core, in agreement with the inner jet structure inferred from lower frequencies, and making a position angle difference of $sim 80^{circ}$ with respect to the cm-jet. The size of the compact core is 0.15,pc with a brightness temperature of $1.2times10^{11}$,K. Compared with those measured at lower frequencies, the low brightness temperature may argue in favor of the decelerating jet model or particle-cascade models. The successful measurement of closure phase paves the way for imaging and time resolving Sgr A* and nearby AGN with the Event Horizon Telescope.
274 - Sheperd Doeleman 2008
The cores of most galaxies are thought to harbour supermassive black holes, which power galactic nuclei by converting the gravitational energy of accreting matter into radiation (ref 1). Sagittarius A*, the compact source of radio, infrared and X-ray emission at the centre of the Milky Way, is the closest example of this phenomenon, with an estimated black hole mass that is 4 million times that of the Sun (refs. 2,3). A long-standing astronomical goal is to resolve structures in the innermost accretion flow surrounding Sgr A* where strong gravitational fields will distort the appearance of radiation emitted near the black hole. Radio observations at wavelengths of 3.5 mm and 7 mm have detected intrinsic structure in Sgr A*, but the spatial resolution of observations at these wavelengths is limited by interstellar scattering (refs. 4-7). Here we report observations at a wavelength of 1.3 mm that set a size of 37 (+16, -10; 3-sigma) microarcseconds on the intrinsic diameter of Sgr A*. This is less than the expected apparent size of the event horizon of the presumed black hole, suggesting that the bulk of SgrA* emission may not be not centred on the black hole, but arises in the surrounding accretion flow.
We used the Submillimeter Array to map the angular distribution of the H30$alpha$ recombination line (231.9 GHz) in the circumstellar region of the peculiar star MWC349A. The resolution was $1farcs2$, but because of high signal-to-noise ratio we meas ured the positions of all maser components to accuracies better than $0farcs01$, at a velocity resolution of $1 kms$. The two strongest maser components (called high velocity components) at velocities near -14 and $32 kms$ are separated by $0farcs048 pm 0farcs001$ (60 AU) along a position angle of $102 pm 1arcdeg$. The distribution of maser emission at velocities between and beyond these two strongest components were also provided. The continuum emission lies at the center of the maser distribution to within 10 mas. The masers appear to trace a nearly edge-on rotating disk structure, reminiscent of the water masers in Keplerian rotation in the nuclear accretion disk of the galaxy NGC4258. However, the maser components in MWC349A do not follow a simple Keplerian kinematic prescription with $v sim r^{-1/2}$, but have a larger power law index. We explore the possibility that the high velocity masers trace spiral density or shock waves. We also emphasize caution in the interpretation of relative centroid maser positions where the maser is not clearly resolved in position or velocity, and we present simulations that illustrate the range of applicability of the centroiding method.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا