ترغب بنشر مسار تعليمي؟ اضغط هنا

We explore UV and optical variability signatures for several hundred members of NGC 2264 (3 Myr). We performed simultaneous u- and r-band monitoring over two full weeks with CFHT/MegaCam. About 750 young stars are probed; 40% of them are accreting. S tatistically distinct variability properties are observed for accreting and non-accreting cluster members. The accretors exhibit a significantly higher level of variability than the non-accretors, especially in the UV. The amount of u-band variability correlates statistically with UV excess in disk-bearing objects, which suggests that accretion and star-disk interaction are the main sources of variability. Cool magnetic spots, several hundred degrees colder than the photosphere and covering from 5 to 30% of the stellar surface, appear to be the leading factor of variability for the non-accreting stars. In contrast, accretion spots, a few thousand degrees hotter than the photosphere and covering a few percent of the stellar surface, best reproduce the variability of accreting objects. The color behavior is also found to be different between accreting and non-accreting stars. Typical variability amplitudes for accreting members rapidly increase from r to u, which indicates a much stronger contrast at short wavelengths; a lower color dependence in the amplitudes is instead measured for diskless stars. We find that u-band variability on hour timescales is typically about 10% of the peak-to-peak variability on day timescales, while longer term (years) variability is consistent with amplitudes measured over weeks. We conclude that for both accreting and non-accreting stars, the mid-term rotational modulation by spots is the leading timescale for a variability of up to several years. In turn, this suggests that the accretion process is essentially stable over years, although it exhibits low-level shorter term variations in single accretion events.
185 - Aleks Scholz 2011
We investigate the rotation periods of fully convective very low mass stars (VLM, M<0.3 Msol), with the aim to derive empirical constraints for the spindown due to magnetically driven stellar winds. Our analysis is based on a new sample of rotation p eriods in the main-sequence cluster Praesepe (age 600 Myr). From photometric lightcurves obtained with the Isaac Newton Telescope, we measure rotation periods for 49 objects, among them 26 in the VLM domain. This enlarges the period sample in this mass and age regime by a factor of 6. Almost all VLM objects in our sample are fast rotators with periods <2.5 d, in contrast to the stars with M>0.6 Msol in this cluster which have periods of 7-14 d. Thus, we confirm that the period-mass distribution in Praesepe exhibits a radical break at M~0.3-0.6 Msol. Our data indicate a positive period-mass trend in the VLM regime, similar to younger clusters. In addition, the scatter of the periods increases with mass. For the M>0.3 Msol objects in our sample the period distribution is probably affected by binarity. By comparing the Praesepe periods with literature samples in the cluster NGC2516 (age ~150 Myr) we constrain the spindown in the VLM regime. An exponential rotational braking law P ~ exp(t/tau) with a mass-dependent tau is required to reproduce the data. The spindown timescale tau increases steeply towards lower masses; we derive tau~0.5 Gyr for 0.3 Msol and >1 Gyr for 0.1 Msol. These constraints are consistent with the current paradigm of the spindown due to wind braking. We discuss possible physical origins of this behaviour and prospects for future work.
We report the discovery of an eclipsing companion to NLTT 41135, a nearby M5 dwarf that was already known to have a wider, slightly more massive common proper motion companion, NLTT 41136, at 2.4 arcsec separation. Analysis of combined-light and radi al velocity curves of the system indicates that NLTT 41135B is a 31-34 +/- 3 MJup brown dwarf (where the range depends on the unknown metallicity of the host star) on a circular orbit. The visual M-dwarf pair appears to be physically bound, so the system forms a hierarchical triple, with masses approximately in the ratio 8:6:1. The eclipses are grazing, preventing an unambiguous measurement of the secondary radius, but follow-up observations of the secondary eclipse (e.g. with the James Webb Space Telescope) could permit measurements of the surface brightness ratio between the two objects, and thus place constraints on models of brown dwarfs.
We report on the results of a time-series photometric survey of M50 (NGC 2323), a ~130 Myr open cluster, carried out using the CTIO 4m Blanco telescope and Mosaic-II detector as part of the Monitor project. Rotation periods were derived for 812 candi date cluster members over the mass range 0.2 <~ M/Msol <~ 1.1. The rotation period distributions show a clear mass-dependent morphology, statistically indistinguishable from those in NGC 2516 and M35 taken from the literature. Due to the availability of data from three observing runs separated by ~10 and 1 month timescales, we are able to demonstrate clear evidence for evolution of the photometric amplitudes, and hence spot patterns, over the 10 month gap, although we are not able to constrain the timescales for these effects in detail due to limitations imposed by the large gaps in our sampling, preventing use of the phase information.
79 - Suzanne Aigrain 2007
The Monitor project is a large-scale program of photometric and spectroscopic monitoring of young open clusters using telescopes at ESO and other observatories. Its primary goal is to detect and characterise new low-mass eclipsing binaries, and the f irst three detected systems are discussed here. We derive the masses and radii of the components of each system directly from the light and radial velocity curves, and compare them to the predictions of commonly used theoretical evolutionary models of low-mass stars.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا