ترغب بنشر مسار تعليمي؟ اضغط هنا

We propose a deep generative model that performs typography analysis and font reconstruction by learning disentangled manifolds of both font style and character shape. Our approach enables us to massively scale up the number of character types we can effectively model compared to previous methods. Specifically, we infer separate latent variables representing character and font via a pair of inference networks which take as input sets of glyphs that either all share a character type, or belong to the same font. This design allows our model to generalize to characters that were not observed during training time, an important task in light of the relative sparsity of most fonts. We also put forward a new loss, adapted from prior work that measures likelihood using an adaptive distribution in a projected space, resulting in more natural images without requiring a discriminator. We evaluate on the task of font reconstruction over various datasets representing character types of many languages, and compare favorably to modern style transfer systems according to both automatic and manually-evaluated metrics.
The rendering procedure used by neural radiance fields (NeRF) samples a scene with a single ray per pixel and may therefore produce renderings that are excessively blurred or aliased when training or testing images observe scene content at different resolutions. The straightforward solution of supersampling by rendering with multiple rays per pixel is impractical for NeRF, because rendering each ray requires querying a multilayer perceptron hundreds of times. Our solution, which we call mip-NeRF (a la mipmap), extends NeRF to represent the scene at a continuously-valued scale. By efficiently rendering anti-aliased conical frustums instead of rays, mip-NeRF reduces objectionable aliasing artifacts and significantly improves NeRFs ability to represent fine details, while also being 7% faster than NeRF and half the size. Compared to NeRF, mip-NeRF reduces average error rates by 17% on the dataset presented with NeRF and by 60% on a challenging multiscale variant of that dataset that we present. Mip-NeRF is also able to match the accuracy of a brute-force supersampled NeRF on our multiscale dataset while being 22x faster.
We present iNeRF, a framework that performs mesh-free pose estimation by inverting a Neural RadianceField (NeRF). NeRFs have been shown to be remarkably effective for the task of view synthesis - synthesizing photorealistic novel views of real-world scenes or objects. In this work, we investigate whether we can apply analysis-by-synthesis via NeRF for mesh-free, RGB-only 6DoF pose estimation - given an image, find the translation and rotation of a camera relative to a 3D object or scene. Our method assumes that no object mesh models are available during either training or test time. Starting from an initial pose estimate, we use gradient descent to minimize the residual between pixels rendered from a NeRF and pixels in an observed image. In our experiments, we first study 1) how to sample rays during pose refinement for iNeRF to collect informative gradients and 2) how different batch sizes of rays affect iNeRF on a synthetic dataset. We then show that for complex real-world scenes from the LLFF dataset, iNeRF can improve NeRF by estimating the camera poses of novel images and using these images as additional training data for NeRF. Finally, we show iNeRF can perform category-level object pose estimation, including object instances not seen during training, with RGB images by inverting a NeRF model inferred from a single view.
We present the first method capable of photorealistically reconstructing deformable scenes using photos/videos captured casually from mobile phones. Our approach augments neural radiance fields (NeRF) by optimizing an additional continuous volumetric deformation field that warps each observed point into a canonical 5D NeRF. We observe that these NeRF-like deformation fields are prone to local minima, and propose a coarse-to-fine optimization method for coordinate-based models that allows for more robust optimization. By adapting principles from geometry processing and physical simulation to NeRF-like models, we propose an elastic regularization of the deformation field that further improves robustness. We show that our method can turn casually captured selfie photos/videos into deformable NeRF models that allow for photorealistic renderings of the subject from arbitrary viewpoints, which we dub nerfies. We evaluate our method by collecting time-synchronized data using a rig with two mobile phones, yielding train/validation images of the same pose at different viewpoints. We show that our method faithfully reconstructs non-rigidly deforming scenes and reproduces unseen views with high fidelity.
We present Cross-Camera Convolutional Color Constancy (C5), a learning-based method, trained on images from multiple cameras, that accurately estimates a scenes illuminant color from raw images captured by a new camera previously unseen during traini ng. C5 is a hypernetwork-like extension of the convolutional color constancy (CCC) approach: C5 learns to generate the weights of a CCC model that is then evaluated on the input image, with the CCC weights dynamically adapted to different input content. Unlike prior cross-camera color constancy models, which are usually designed to be agnostic to the spectral properties of test-set images from unobserved cameras, C5 approaches this problem through the lens of transductive inference: additional unlabeled images are provided as input to the model at test time, which allows the model to calibrate itself to the spectral properties of the test-set camera during inference. C5 achieves state-of-the-art accuracy for cross-camera color constancy on several datasets, is fast to evaluate (~7 and ~90 ms per image on a GPU or CPU, respectively), and requires little memory (~2 MB), and thus is a practical solution to the problem of calibration-free automatic white balance for mobile photography.
Traditional reflection removal algorithms either use a single image as input, which suffers from intrinsic ambiguities, or use multiple images from a moving camera, which is inconvenient for users. We instead propose a learning-based dereflection alg orithm that uses stereo images as input. This is an effective trade-off between the two extremes: the parallax between two views provides cues to remove reflections, and two views are easy to capture due to the adoption of stereo cameras in smartphones. Our model consists of a learning-based reflection-invariant flow model for dual-view registration, and a learned synthesis model for combining aligned image pairs. Because no dataset for dual-view reflection removal exists, we render a synthetic dataset of dual-views with and without reflections for use in training. Our evaluation on an additional real-world dataset of stereo pairs shows that our algorithm outperforms existing single-image and multi-image dereflection approaches.
Casually-taken portrait photographs often suffer from unflattering lighting and shadowing because of suboptimal conditions in the environment. Aesthetic qualities such as the position and softness of shadows and the lighting ratio between the bright and dark parts of the face are frequently determined by the constraints of the environment rather than by the photographer. Professionals address this issue by adding light shaping tools such as scrims, bounce cards, and flashes. In this paper, we present a computational approach that gives casual photographers some of this control, thereby allowing poorly-lit portraits to be relit post-capture in a realistic and easily-controllable way. Our approach relies on a pair of neural networks---one to remove foreign shadows cast by external objects, and another to soften facial shadows cast by the features of the subject and to add a synthetic fill light to improve the lighting ratio. To train our first network we construct a dataset of real-world portraits wherein synthetic foreign shadows are rendered onto the face, and we show that our network learns to remove those unwanted shadows. To train our second network we use a dataset of Light Stage scans of human subjects to construct input/output pairs of input images harshly lit by a small light source, and variably softened and fill-lit output images of each face. We propose a way to explicitly encode facial symmetry and show that our dataset and training procedure enable the model to generalize to images taken in the wild. Together, these networks enable the realistic and aesthetically pleasing enhancement of shadows and lights in real-world portrait images
Lighting plays a central role in conveying the essence and depth of the subject in a portrait photograph. Professional photographers will carefully control the lighting in their studio to manipulate the appearance of their subject, while consumer pho tographers are usually constrained to the illumination of their environment. Though prior works have explored techniques for relighting an image, their utility is usually limited due to requirements of specialized hardware, multiple images of the subject under controlled or known illuminations, or accurate models of geometry and reflectance. To this end, we present a system for portrait relighting: a neural network that takes as input a single RGB image of a portrait taken with a standard cellphone camera in an unconstrained environment, and from that image produces a relit image of that subject as though it were illuminated according to any provided environment map. Our method is trained on a small database of 18 individuals captured under different directional light sources in a controlled light stage setup consisting of a densely sampled sphere of lights. Our proposed technique produces quantitatively superior results on our datasets validation set compared to prior works, and produces convincing qualitative relighting results on a dataset of hundreds of real-world cellphone portraits. Because our technique can produce a 640 $times$ 640 image in only 160 milliseconds, it may enable interactive user-facing photographic applications in the future.
We explore the problem of view synthesis from a narrow baseline pair of images, and focus on generating high-quality view extrapolations with plausible disocclusions. Our method builds upon prior work in predicting a multiplane image (MPI), which rep resents scene content as a set of RGB$alpha$ planes within a reference view frustum and renders novel views by projecting this content into the target viewpoints. We present a theoretical analysis showing how the range of views that can be rendered from an MPI increases linearly with the MPI disparity sampling frequency, as well as a novel MPI prediction procedure that theoretically enables view extrapolations of up to $4times$ the lateral viewpoint movement allowed by prior work. Our method ameliorates two specific issues that limit the range of views renderable by prior methods: 1) We expand the range of novel views that can be rendered without depth discretization artifacts by using a 3D convolutional network architecture along with a randomized-resolution training procedure to allow our model to predict MPIs with increased disparity sampling frequency. 2) We reduce the repeated texture artifacts seen in disocclusions by enforcing a constraint that the appearance of hidden content at any depth must be drawn from visible content at or behind that depth. Please see our results video at: https://www.youtube.com/watch?v=aJqAaMNL2m4.
In this work, we present a camera configuration for acquiring stereoscopic dark flash images: a simultaneous stereo pair in which one camera is a conventional RGB sensor, but the other camera is sensitive to near-infrared and near-ultraviolet instead of R and B. When paired with a dark flash (i.e., one having near-infrared and near-ultraviolet light, but no visible light) this camera allows us to capture the two images in a flash/no-flash image pair at the same time, all while not disturbing any human subjects or onlookers with a dazzling visible flash. We present a hardware prototype of this camera that approximates an idealized camera, and we present an imaging procedure that let us acquire dark flash stereo pairs that closely resemble those we would get from that idealized camera. We then present a technique for fusing these stereo pairs, first by performing registration and warping, and then by using recent advances in hyperspectral image fusion and deep learning to produce a final image. Because our camera configuration and our data acquisition process allow us to capture true low-noise long exposure RGB images alongside our dark flash stereo pairs, our learned model can be trained end-to-end to produce a fused image that retains the color and tone of a real RGB image while having the low-noise properties of a flash image.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا