ترغب بنشر مسار تعليمي؟ اضغط هنا

We develop a Learning Direct Optimization (LiDO) method for the refinement of a latent variable model that describes input image x. Our goal is to explain a single image x with an interpretable 3D computer graphics model having scene graph latent var iables z (such as object appearance, camera position). Given a current estimate of z we can render a prediction of the image g(z), which can be compared to the image x. The standard way to proceed is then to measure the error E(x, g(z)) between the two, and use an optimizer to minimize the error. However, it is unknown which error measure E would be most effective for simultaneously addressing issues such as misaligned objects, occlusions, textures, etc. In contrast, the LiDO approach trains a Prediction Network to predict an update directly to correct z, rather than minimizing the error with respect to z. Experiments show that our LiDO method converges rapidly as it does not need to perform a search on the error landscape, produces better solutions than error-based competitors, and is able to handle the mismatch between the data and the fitted scene model. We apply LiDO to a realistic synthetic dataset, and show that the method also transfers to work well with real images.
We propose the Gaussian attention model for content-based neural memory access. With the proposed attention model, a neural network has the additional degree of freedom to control the focus of its attention from a laser sharp attention to a broad att ention. It is applicable whenever we can assume that the distance in the latent space reflects some notion of semantics. We use the proposed attention model as a scoring function for the embedding of a knowledge base into a continuous vector space and then train a model that performs question answering about the entities in the knowledge base. The proposed attention model can handle both the propagation of uncertainty when following a series of relations and also the conjunction of conditions in a natural way. On a dataset of soccer players who participated in the FIFA World Cup 2014, we demonstrate that our model can handle both path queries and conjunctive queries well.
We propose an extension of the Restricted Boltzmann Machine (RBM) that allows the joint shape and appearance of foreground objects in cluttered images to be modeled independently of the background. We present a learning scheme that learns this repres entation directly from cluttered images with only very weak supervision. The model generates plausible samples and performs foreground-background segmentation. We demonstrate that representing foreground objects independently of the background can be beneficial in recognition tasks.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا