ترغب بنشر مسار تعليمي؟ اضغط هنا

Here we present a method of constructing steerable wavelet frames in $L_2(mathbb{R}^d)$ that generalizes and unifies previous approaches, including Simoncellis pyramid and Riesz wavelets. The motivation for steerable wavelets is the need to more accu rately account for the orientation of data. Such wavelets can be constructed by decomposing an isotropic mother wavelet into a finite collection of oriented mother wavelets. The key to this construction is that the angular decomposition is an isometry, whereby the new collection of wavelets maintains the frame bounds of the original one. The general method that we propose here is based on partitions of unity involving spherical harmonics. A fundamental aspect of this construction is that Fourier multipliers composed of spherical harmonics correspond to singular integrals in the spatial domain. Such transforms have been studied extensively in the field of harmonic analysis, and we take advantage of this wealth of knowledge to make the proposed construction practically feasible and computationally efficient.
The Riesz transform is a natural multi-dimensional extension of the Hilbert transform, and it has been the object of study for many years due to its nice mathematical properties. More recently, the Riesz transform and its variants have been used to c onstruct complex wavelets and steerable wavelet frames in higher dimensions. The flip side of this approach, however, is that the Riesz transform of a wavelet often has slow decay. One can nevertheless overcome this problem by requiring the original wavelet to have sufficient smoothness, decay, and vanishing moments. In this paper, we derive necessary conditions in terms of these three properties that guarantee the decay of the Riesz transform and its variants, and as an application, we show how the decay of the popular Simoncelli wavelets can be improved by appropriately modifying their Fourier transforms. By applying the Riesz transform to these new wavelets, we obtain steerable frames with rapid decay.
The connection between derivative operators and wavelets is well known. Here we generalize the concept by constructing multiresolution approximations and wavelet basis functions that act like Fourier multiplier operators. This construction follows fr om a stochastic model: signals are tempered distributions such that the application of a whitening (differential) operator results in a realization of a sparse white noise. Using wavelets constructed from these operators, the sparsity of the white noise can be inherited by the wavelet coefficients. In this paper, we specify such wavelets in full generality and determine their properties in terms of the underlying operator.
170 - John Paul Ward 2010
Bernstein inequalities and inverse theorems are a recent development in the theory of radial basis function(RBF) approximation. The purpose of this paper is to extend what is known by deriving $L^p$ Bernstein inequalities for RBF networks on $mathbb{ R}^d$. These inequalities involve bounding a Bessel-potential norm of an RBF network by its corresponding $L^p$ norm in terms of the separation radius associated with the network. The Bernstein inequalities will then be used to prove the corresponding inverse theorems.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا