ترغب بنشر مسار تعليمي؟ اضغط هنا

122 - Karen L. Masters 2014
The 2 Micron All-Sky Survey (2MASS) Tully-Fisher Survey (2MTF) aims to measure Tully-Fisher (TF) distances to all bright inclined spirals in the 2MASS Redshift Survey (2MRS). Essential to this project is a universal calibration of the TF relation in the 2MASS J (1.2 um), H (1.6 um) and K (2.2 um) bands. We present the first bias corrected or universal TF template in these bands. We find that the slope of the TF relation becomes steeper as the wavelength increases being close to L propto v^4 in K-band and L propto v^3.6 in J and H-bands. We also investigate the dependence on galaxy morphology showing that in all three bands the relation is steeper for later type spirals which also have a dimmer TF zeropoint than earlier type spirals. We correct the final relation to that for Sc galaxies. Finally we study the scatter from the TF relation fitting for a width dependent intrinsic scatter which is not found to vary significantly with wavelength.
We perform aperture photometry and profile fitting on 419 globular cluster (GC) candidates with mV leq 23 mag identified in Hubble Space Telescope Advanced Camera for Surveys BVI imaging, and estimate the effective radii of the clusters. We identify 85 previously known spectroscopically-confirmed clusters, and newly identify 136 objects as good cluster candidates within the 3{sigma} color and size ranges defined by the spectroscopically confirmed clusters, yielding a total of 221 probable GCs. The luminosity function peak for the 221 probable GCs with estimated total dereddening applied is V ~(20.26 pm 0.13) mag, corresponding to a distance of ~3.7pm0.3 Mpc. The blue and red GC candidates, and the metal-rich (MR) and metal-poor (MP) spectroscopically confirmed clusters, are similar in half-light radius, respectively. Red confirmed clusters are about 6% larger in median half-light radius than blue confirmed clusters, and red and blue good GC candidates are nearly identical in half-light radius. The total population of confirmed and good candidates shows an increase in half-light radius as a function of galactocentric distance.
We obtained spectra of 74 globular clusters in M81. These globular clusters had been identified as candidates in an HST ACS I-band survey. 68 of these 74 clusters lie within 7 of the M81 nucleus. 62 of these clusters are newly spectroscopically confi rmed, more than doubling the number of confirmed M81 GCs from 46 to 108. We determined metallicities for our 74 observed clusters using an empirical calibration based on Milky Way globular clusters. We combined our results with 34 M81 globular cluster velocities and 33 metallicities from the literature and analyzed the kinematics and metallicity of the M81 globular cluster system. The mean of the total sample of 107 metallicities is -1.06 +/- 0.07, higher than either M31 or the Milky Way. We suspect this high mean metallicity is due to an overrepresentation of metal-rich clusters in our sample created by the spatial limits of the HST I-band survey. The metallicity distribution shows marginal evidence for bimodality, with metal-rich and metal-poor peaks approximately matching those of M31 and the Milky Way. The GC system as a whole, and the metal-poor GCs alone, show evidence of a radial metallicity gradient. The M81 globular cluster system as a whole shows strong evidence of rotation, with V_r(deprojected) = 108 +/- 22 km/s overall. This result is likely biased toward high rotational velocity due to overrepresentation of metal-rich, inner clusters. The rotation patterns among globular cluster subpopulations are roughly similar to those of the Milky Way: clusters at small projected radii and metal-rich clusters rotate strongly, while clusters at large projected radii and metal-poor clusters show weaker evidence of rotation.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا