ترغب بنشر مسار تعليمي؟ اضغط هنا

We study the asymptotic behaviour of sharp front solutions arising from the nonlinear diffusion equation theta_t = (D(theta)theta_x)_x, where the diffusivity is an exponential function D({theta}) = D_o exp(betatheta). This problem arises for example in the study of unsaturated flow in porous media where {theta} represents the liquid saturation. For physical parameters corresponding to actual porous media, the diffusivity at the residual saturation is D(0) = D_o << 1 so that the diffusion problem is nearly degenerate. Such problems are characterised by wetting fronts that sharply delineate regions of saturated and unsaturated flow, and that propagate with a well-defined speed. Using matched asymptotic expansions in the limit of large {beta}, we derive an analytical description of the solution that is uniformly valid throughout the wetting front. This is in contrast with most other related analyses that instead truncate the solution at some specific wetting front location, which is then calculated as part of the solution, and beyond that location the solution is undefined. Our asymptotic analysis demonstrates that the solution has a four-layer structure, and by matching through the adjacent layers we obtain an estimate of the wetting front location in terms of the material parameters describing the porous medium. Using numerical simulations of the original nonlinear diffusion equation, we demonstrate that the first few terms in our series solution provide approximations of physical quantities such as wetting front location and speed of propagation that are more accurate (over a wide range of admissible {beta} values) than other asymptotic approximations reported in the literature.
The technique of periodic homogenization with two-scale convergence is applied to the analysis of a two-phase Stefan-type problem that arises in the study of a periodic array of melting ice bars. For this reduced model we prove results on existence, uniqueness and convergence of the two-scale limit solution in the weak form, which requires solving a macroscale problem for the global temperature field and a reference cell problem at each point in space which captures the underlying phase change process occurring on the microscale. We state a corresponding strong formulation of the limit problem and use it to design an efficient numerical solution algorithm. The same homogenized temperature equations are then applied to solve a much more complicated problem involving multi-phase flow and heat transport in trees, where the sap is present in both frozen and liquid forms and a third gas phase is also present. Our homogenization approach has the advantage that the global temperature field is a solution of the same reduced model equations, while all the remaining physics are relegated to the reference cell problem. Numerical simulations are performed to validate our results and draw conclusions regarding the phenomenon known as sap exudation, which is of great importance in sugar maple trees and few other related species.
A mathematical model is developed that captures the transport of liquid water in hardened concrete, as well as the chemical reactions that occur between the imbibed water and the residual calcium silicate compounds residing in the porous concrete mat rix. The main hypothesis in this model is that the reaction product -- calcium silicate hydrate gel -- clogs the pores within the concrete thereby hindering water transport. Numerical simulations are employed to determine the sensitivity of the model solution to changes in various physical parameters, and compare to experimental results available in the literature.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا