ترغب بنشر مسار تعليمي؟ اضغط هنا

Lifetimes of complexes formed during helium-hydrocarbon collisions at low temperature are estimated for symmetric top hydrocarbons. The lifetimes are obtained using a density-of-states approach. In general the lifetimes are less than 10-100 ns, and a re found to decrease with increasing hydrocarbon size. This suggests that clustering will not limit precision spectroscopy in helium buffer gas experiments. Lifetimes are computed for noble-gas benzene collisions and are found to be in reasonable agreement with lifetimes obtained from classical trajectories as reported by Cui {it et al}.
We present a formalism for cold and ultracold atom-diatom chemical reactions that combines a quantum close-coupling method at short-range with quantum defect theory at long-range. The method yields full state-to-state rovibrationally resolved cross s ections as in standard close-coupling (CC) calculations but at a considerably less computational expense. This hybrid approach exploits the simplicity of MQDT while treating the short-range interaction explicitly using quantum CC calculations. The method, demonstrated for D+H$_2to$ HD+H collisions with rovibrational quantum state resolution of the HD product, is shown to be accurate for a wide range of collision energies and initial conditions. The hybrid CC-MQDT formalism may provide an alternative approach to full CC calculations for cold and ultracold reactions.
Analytic expressions for the differential cross sections of ultracold atoms and molecules that scatter primarily due to dipolar interactions are derived within the first Born approximation, and are shown to agree with the partial wave expansion. Thes e cross sections are applied to the problem of cross-dimensional rethermalization. Strikingly, the rate of rethermalization can vary by as much as a factor of two, depending on the orientation of polarization of the dipoles. Thus the anisotropic dipole-dipole interaction can have a profound effect even on the behavior of a nondegenerate ultracold gas.
We characterize the immiscibility-miscibility transition (IMT) of a two-component Bose-Einstein condensate (BEC) with dipole-dipole interactions. In particular, we consider the quasi-two dimensional geometry, where a strong trapping potential admits only zero-point motion in the trap direction, while the atoms are more free to move in the transverse directions. We employ the Bogoliubov treatment of the two-component system to identify both the well-known long-wavelength IMT in addition to a roton-like IMT, where the transition occurs at finite-wave number and is reminiscent of the roton softening in the single component dipolar BEC. Additionally, we verify the existence of the roton IMT in the fully trapped, finite systems by direct numerical simulation of the two-component coupled non-local Gross-Pitaevskii equations.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا