ترغب بنشر مسار تعليمي؟ اضغط هنا

We present a new sample of M subdwarfs compiled from the 7th data release of the Sloan Digital Sky Survey. With 3517 new subdwarfs, this new sample significantly increases the number of spectroscopically confirmed low-mass subdwarfs. This catalog als o includes 905 extreme and 534 ultra sudwarfs. We present the entire catalog including observed and derived quantities, and template spectra created from co-added subdwarf spectra. We show color-color and reduced proper motion diagrams of the three metallicity classes, which are shown to separate from the disk dwarf population. The extreme and ultra subdwarfs are seen at larger values of reduced proper motion as expected for more dynamically heated populations. We determine 3D kinematics for all of the stars with proper motions. The color-magnitude diagrams show a clear separation of the three metallicity classes with the ultra and extreme subdwarfs being significantly closer to the main sequence than the ordinary subdwarfs. All subdwarfs lie below (fainter) and to the left (bluer) of the main sequence. Based on the average $(U,V,W)$ velocities and their dispersions, the extreme and ultra subdwarfs likely belong to the Galactic halo, while the ordinary subdwarfs are likely part of the old Galactic (or thick) disk. An extensive activity analysis of subdwarfs is performed using H$alpha$ emission and 208 active subdwarfs are found. We show that while the activity fraction of subdwarfs rises with spectral class and levels off at the latest spectral classes, consistent with the behavior of M dwarfs, the extreme and ultra subdwarfs are basically flat.
We report on the discovery of the most distant Milky Way (MW) stars known to date: ULAS J001535.72$+$015549.6 and ULAS J074417.48$+$253233.0. These stars were selected as M giant candidates based on their infrared and optical colors and lack of prope r motions. We spectroscopically confirmed them as outer halo giants using the MMT/Red Channel spectrograph. Both stars have large estimated distances, with ULAS J001535.72$+$015549.6 at $274 pm 74$ kpc and ULAS J074417.48$+$253233.0 at 238 $pm$ 64 kpc, making them the first MW stars discovered beyond 200 kpc. ULAS J001535.72$+$015549.6 and ULAS J074417.48$+$253233.0 are both moving away from the Galactic center at $52 pm 10$ km s$^{-1}$ and $24 pm 10$ km s$^{-1}$, respectively. Using their distances and kinematics, we considered possible origins such as: tidal stripping from a dwarf galaxy, ejection from the MWs disk, or membership in an undetected dwarf galaxy. These M giants, along with two inner halo giants that were also confirmed during this campaign, are the first to map largely unexplored regions of our Galaxys outer halo.
We present a new catalog of 404 M giant candidates found in the UKIRT Infrared Deep Sky Survey (UKIDSS). The 2,400 deg$^2$ available in the UKIDSS Large Area Survey Data Release 8 resolve M giants through a volume four times larger than that of the e ntire Two Micron All Sky Survey. Combining near-infrared photometry with optical photometry and proper motions from the Sloan Digital Sky Survey yields an M giant candidate catalog with less M dwarf and quasar contamination than previous searches for similarly distant M giants. Extensive follow-up spectroscopy of this sample will yield the first map of our Galaxys outermost reaches over a large area of sky. Our initial spectroscopic follow-up of $sim$ 30 bright candidates yielded the positive identification of five M giants at distances $sim 20-90$ kpc. Each of these confirmed M giants have positions and velocities consistent with the Sagittarius stream. The fainter M giant candidates in our sample have estimated photometric distances $sim 200$ kpc (assuming $[Fe/H]$ = 0.0), but require further spectroscopic verification. The photometric distance estimates extend beyond the Milky Ways virial radius, and increase by $sim 50%$ for each 0.5 dex decrease in assumed $[Fe/H]$. Given the number of M giant candidates, initial selection efficiency, and volume surveyed, we loosely estimate that at least one additional Sagittarius-like accretion event could have contributed to the hierarchical build-up of the Milky Ways outer halo.
We present a statistical parallax study of nearly 2,000 M subdwarfs with photometry and spectroscopy from the Sloan Digital Sky Survey. Statistical parallax analysis yields the mean absolute magnitudes, mean velocities and velocity ellipsoids for hom ogenous samples of stars. We selected homogeneous groups of subdwarfs based on their photometric colors and spectral appearance. We examined the color-magnitude relations of low-mass subdwarfs and quantified their dependence on the newly-refined metallicity parameter, zeta. We also developed a photometric metallicity parameter, delta(g-r), based on the g-r and r-z colors of low-mass stars and used it to select stars with similar metallicities. The kinematics of low-mass subdwarfs as a function of color and metallicity were also examined and compared to main sequence M dwarfs. We find that the SDSS subdwarfs share similar kinematics to the inner halo and thick disk. The color-magnitude relations derived in this analysis will be a powerful tool for identifying and characterizing low-mass metal-poor subdwarfs in future surveys such as GAIA and LSST, making them important and plentiful tracers of the stellar halo.
We present {lambda}/{Delta}{lambda} ~ 6000 near-infrared spectroscopy of the nearby T9 dwarf, UGPS J072227.51-054031.2, obtained during the commissioning of the Folded-Port Infrared Echellette Spectrograph on the Baade Magellan telescope at Las Campa nas Observatory. The spectrum is marked by significant absorption from H2O, CH4 and H2. We also identify NH3 absorption features by comparing the spectrum to recently published line lists. The spectrum is fit with BT-Settl models, indicating Teff ~ 500-600 K and log g ~ 4.3-5.0. This corresponds to a mass of ~ 10-30 MJup and an age of 1-5 Gyr, however there are large discrepancies between the model and observed spectrum. The radial and rotational velocities of the brown dwarf are measured as 46.9 pm 2.5 and 40 pm 10 km/s, respectively, reflecting a thin disk Galactic orbit and fast rotation similar to other T dwarfs, suggesting a young, possibly planetary-mass brown dwarf.
We present a statistical parallax analysis of low-mass dwarfs from the Sloan Digital Sky Survey (SDSS). We calculate absolute r-band magnitudes (M_r) as a function of color and spectral type, and investigate changes in M_r with location in the Milky Way. We find that magnetically active M dwarfs are intrinsically brighter in M_r than their inactive counterparts at the same color or spectral type. Metallicity, as traced by the proxy zeta, also affects M_r, with metal poor stars having fainter absolute magnitudes than higher metallicity M dwarfs at the same color or spectral type. Additionally, we measure the velocity ellipsoid and solar reflex motion for each subsample of M dwarfs. We find good agreement between our measured solar peculiar motion and previous results for similar populations, as well as some evidence for differing motions of early and late M type populations in U and W velocities that cannot be attributed to asymmetric drift. The reflex solar motion and the velocity dispersions both show that younger populations, as traced by magnetic activity and location near the Galactic plane, have experienced less dynamical heating. We introduce a new parameter, the independent position altitude (IPA), to investigate populations as a function of vertical height from the Galactic plane. M dwarfs at all types exhibit an increase in velocity dispersion when analyzed in comparable IPA subgroups.
We present a brief overview of a splinter session on determining the metallicity of low-mass dwarfs that was organized as part of the Cool Stars 16 conference. We review contemporary spectroscopic and photometric techniques for estimating metallicity in low-mass dwarfs and discuss the importance of measuring accurate metallicities for studies of Galactic and chemical evolution using subdwarfs, creating metallicity benchmarks for brown dwarfs, and searching for extrasolar planets that are orbiting around low--mass dwarfs. In addition, we present the current understanding of the effects of metallicity on stellar evolution and atmosphere models and discuss some of the limitations that are important to consider when comparing theoretical models to data.
We report on the analysis of ~22,000 M dwarfs using a statistical parallax method. This technique employs a maximum-likelihood formulation to simultaneously solve for the absolute magnitude, velocity ellipsoid parameters and reflex solar motion of a homogeneous stellar sample, and has previously been applied to Galactic RR Lyrae and Cepheid populations and to the Palomar/Michigan State University (PMSU) survey of nearby low-mass stars. We analyze subsamples of the most recent spectroscopic catalog of M dwarfs in the Sloan Digital Sky Survey (SDSS) to determine absolute magnitudes and kinematic properties as a function of spectral type, color, chromospheric activity and metallicity. We find new, independent spectral type-absolute magnitude relations, and color-absolute magnitude relations in the SDSS filters, and compare to those found from other methods. Active stars have brighter absolute magnitudes and lower metallicity stars have fainter absolute magnitudes for stars of type M0-M4. Our kinematic analysis confirms previous results for the solar motion and velocity dispersions, with more distant stars possessing larger peculiar motions, and chromospherically active (younger) stars having smaller velocity dispersions than their inactive counterparts. We find some evidence for systematic differences in the mean U and W velocities of samples subdivided by color.
86 - John J. Bochanski 2010
Modern sky surveys, such as the Sloan Digital Sky Survey and the Two-Micron All Sky Survey, have revolutionized the study of low-mass stars. With millions of photometric and spectroscopic observations, intrinsic stellar properties can be studied with unprecedented statistical significance. Low-mass stars dominate the local Milky Way and are ideal tracers of the Galactic potential and the thin and thick disks. Recent efforts, driven by SDSS observations, have sought to place the local low-mass stellar population in a broader Galactic context. I highlight a recent measurement of the luminosity and mass functions of M dwarfs, using a new technique optimized for large surveys. Starting with SDSS photometry, the field luminosity function and local Galactic structure are measured simultaneously. The sample size used to estimate the LF is nearly three orders of magnitude larger than any previous study, offering a definitive measurement of this quantity. The observed LF is transformed into a mass function and compared to previous studies. Ongoing investigations employing M dwarfs as tracers of Galactic kinematics are also discussed. SDSS spectroscopy has produced databases containing tens of thousands of low-mass stars, forming a powerful probe of the kinematic structure of the Milky Way. SDSS spectroscopic studies are complemented by large proper motion surveys, which have uncovered thousands of common proper motion binaries containing low-mass stars. Additionally, the SDSS spectroscopic data explore the intrinsic properties of M dwarfs, including metallicity and magnetic activity. The highlighted projects demonstrate the advantages and problems with using large data sets and will pave the way for studies with next-generation surveys, such as PanSTARRS and LSST.
We report on new measurements of the luminosity function (LF) and mass function (MF) of field low-mass dwarfs derived from Sloan Digital Sky Survey (SDSS) Data Release 6 (DR6) photometry. The analysis incorporates ~15 million low-mass stars (0.1 Msun < M < 0.8 Msun), spread over 8,400 square degrees. Stellar distances are estimated using new photometric parallax relations, constructed from ugriz photometry of nearby low-mass stars with trigonometric parallaxes. We use a technique that simultaneously measures Galactic structure and the stellar LF from 7 < M_r < 16. We compare the LF to previous studies and convert to a MF using the mass-luminosity relations of Delfosse et al., 2000. The system MF, measured over -1.0 < log M/Msun < -0.1, is well-described by a log-normal distribution with Mo = 0.25 Msun. We stress that our results should not be extrapolated to other mass regimes. Our work generally agrees with prior low-mass stellar MFs and places strong constraints on future star-formation studies of the Milky Way.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا