ترغب بنشر مسار تعليمي؟ اضغط هنا

We consider reproducing kernel Hilbert spaces of Dirichlet series with kernels of the form $k(s,u) = sum a_n n^{-s-bar u}$, and characterize when such a space is a complete Pick space. We then discuss what it means for two reproducing kernel Hilbert spaces to be the same, and introduce a notion of weak isomorphism. Many of the spaces we consider turn out to be weakly isomorphic as reproducing kernel Hilbert spaces to the Drury-Arveson space $H^2_d$ in $d$ variables, where $d$ can be any number in ${1,2,ldots, infty}$, and in particular their multiplier algebras are unitarily equivalent to the multiplier algebra of $H^2_d$. Thus, a family of multiplier algebras of Dirichlet series are exhibited with the property that every complete Pick algebra is a quotient of each member of this family. Finally, we determine precisely when such a space of Dirichlet series is weakly isomorphic to $H^2_d$ and when its multiplier algebra is isometrically isomorphic to $Mult(H^2_d)$.
We provide a new proof of Volbergs Theorem characterizing thin interpolating sequences as those for which the Gram matrix associated to the normalized reproducing kernels is a compact perturbation of the identity. In the same paper, Volberg character ized sequences for which the Gram matrix is a compact perturbation of a unitary as well as those for which the Gram matrix is a Schatten-$2$ class perturbation of a unitary operator. We extend this characterization from $2$ to $p$, where $2 le p le infty$.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا