ترغب بنشر مسار تعليمي؟ اضغط هنا

Theoretical studies have predicted the existence of topological magnons in honeycomb compounds with zig-zag antiferromagnetic (AFM) order. Here we report the discovery of zig-zag AFM order in the layered and non-centrosymmetric honeycomb nickelate Ni $_2$Mo$_3$O$_8$ through a combination of magnetization, specific heat, x-ray and neutron diffraction and electron paramagnetic resonance measurements. It is the first example of such order in an integer-spin non-centrosymmetric structure ($P$$_6$3$mc$). Further, each of the two distinct sites of the bipartite honeycomb lattice has a unique crystal field environment, octahedral and tetrahedral Ni$^{2+}$ respectively, enabling independent substitution on each sublattice. Replacement of Ni by Mg on the octahedral site suppresses the long range magnetic order and results in a weakly ferromagnetic state. Conversely, substitution of Fe for Ni enhances the AFM ordering temperature. Thus Ni$_2$Mo$_3$O$_8$ provides a platform on which to explore the rich physics of $S = 1$ on the honeycomb in the presence of competing magnetic interactions with a non-centrosymmetric, formally piezeo-polar, crystal structure.
Recently measurements on various spin-1/2 quantum magnets such as H$_3$LiIr$_2$O$_6$, LiZn$_2$Mo$_3$O$_8$, ZnCu$_3$(OH)$_6$Cl$_2$ and 1T-TaS$_2$ -- all described by magnetic frustration and quenched disorder but with no other common relation -- never theless showed apparently universal scaling features at low temperature. In particular the heat capacity C[H,T] in temperature T and magnetic field H exhibits T/H data collapse reminiscent of scaling near a critical point. Here we propose a theory for this scaling collapse based on an emergent random-singlet regime extended to include spin-orbit coupling and antisymmetric Dzyaloshinskii-Moriya (DM) interactions. We derive the scaling $C[H,T]/T sim H^{-gamma} F_q[T/H]$ with $F_q[x] = x^{q}$ at small $x$, with $q in$ (0,1,2) an integer exponent whose value depends on spatial symmetries. The agreement with experiments indicates that a fraction of spins form random valence bonds and that these are surrounded by a quantum paramagnetic phase. We also discuss distinct scaling for magnetization with a $q$-dependent subdominant term enforced by Maxwells relations.
The emergence of complex electronic behaviour from simple ingredients has resulted in the discovery of numerous states of matter. Many examples are found in systems exhibiting geometric magnetic frustration, which prevents simultaneous satisfaction o f all magnetic interactions. This frustration gives rise to complex magnetic properties such as chiral spin structures orbitally-driven magnetism, spin-ice behavior exhibiting Dirac strings with magnetic monopoles, valence bond solids, and spin liquids. Here we report the synthesis and characterization of LiZn2Mo3O8, a geometrically frustrated antiferromagnet in which the magnetic moments are localized on small transition metal clusters rather than individual ions. By doing so, first order Jahn-Teller instabilities and orbital ordering are prevented, allowing the strongly interacting magnetic clusters in LiZn2Mo3O8 to probably give rise to an exotic condensed valence-bond ground state reminiscent of the proposed resonating valence bond state. Our results also link magnetism on clusters to geometric magnetic frustration in extended solids, demonstrating a new approach for unparalleled chemical control and tunability in the search for collective, emergent electronic states of matter.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا