ترغب بنشر مسار تعليمي؟ اضغط هنا

The emergence of the Haldane Chern insulator state due to strong short range repulsive interactions in the half-filled fermionic spinless honeycomb lattice model has been proposed and challenged with different methods and yet it still remains controv ersial. In this work we revisit the problem using the infinite density matrix renormalization group method and report numerical evidence supporting i) the absence of the Chern insulator state, ii) two previously unnoticed charge ordered phases and iii) the existence and stability of all the non-topological competing orders that were found previously within mean field. In addition, we discuss the nature of the corresponding phase transitions based on our numerical data. Our work establishes the phase diagram of the half-filled honeycomb lattice model tilting the balance towards the absence of a Chern insulator phase for this model.
Recently, it has been proposed that exotic one-dimensional phases can be realized by gapping out the edge states of a fractional topological insulator. The low-energy edge degrees of freedom are described by a chain of coupled parafermions. We introd uce a classification scheme for the phases that can occur in parafermionic chains. We find that the parafermions support both topological symmetry fractionalized phases as well as phases in which the parafermions condense. In the presence of additional symmetries, the phases form a non-Abelian group. As a concrete example of the classification, we consider the effective edge model for a $ u= 1/3$ fractional topological insulator for which we calculate the entanglement spectra numerically and show that all possible predicted phases can be realized.
We construct a basis for the many-particle ground states of the positive hopping Bose-Hubbard model on line graphs of finite 2-connected planar bipartite graphs at sufficiently low filling factors. The particles in these states are localized on non-i ntersecting vertex-disjoint cycles of the line graph which correspond to non-intersecting edge-disjoint cycles of the original graph. The construction works up to a critical filling factor at which the cycles are close-packed.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا