ترغب بنشر مسار تعليمي؟ اضغط هنا

An effective field theory is used to describe light nuclei, calculated from quantum chromodynamics on a lattice at unphysically large pion masses. The theory is calibrated at leading order to two available data sets on two- and three-body nuclei for two pion masses. At those pion masses we predict the quartet and doublet neutron-deuteron scattering lengths, and the alpha-particle binding energy. For $m_pi=510~$MeV we obtain, respectively, $^4a_{rm nD}=2.3pm 1.3~$fm, $^2a_{rm nD}=2.2pm 2.1~$fm, and $B_{alpha}^{}=35pm 22~$MeV, while for $m_pi=805~$MeV $^4a_{rm nD}=1.6pm 1.3~$fm, $^2a_{rm nD}=0.62pm 1.0~$fm, and $B_{alpha}^{}=94pm 45~$MeV are found. Phillips- and Tjon-like correlations to the triton binding energy are established. Higher-order effects on the respective correlation bands are found insensitive to the pion mass. As a benchmark, we present results for the physical pion mass, using experimental two-body scattering lengths and the triton binding energy as input. Hints of subtle changes in the structure of the triton and alpha particle are discussed.
82 - Johannes Kirscher 2015
A systematic description of low-energy observables in light nuclei is presented. The effective field theory formalism without pions is extended to: i) predictions with next-to-leading-order (non-perturbatively) accuracy for the 4-helium binding energ y B({alpha}), the triton charge radius, and the 3-helium-neutron scattering length; ii) phase shifts for neutron-deuteron scattering and {alpha}-neutron low-energy scattering at leading order; iii) the ground states of the 5-helium (with and without Coulomb interaction) and 6-helium isotopes up to next-to-leading order; The convergence from leading- to next-to-leading order of the theory is demonstrated for correlations between: i) the triton binding energy B(t) and the triton charge radius; ii) B(t) and the 4-helium binding energy B({alpha}); Furthermore, a correlation between B(t) and the scattering length in the singlet S-wave channel of neutron-helium-3 scattering is discovered, and a model-independent estimate for the trinucleon binding energy splitting is provided. The results provide evidence for the usefulness of the applied power-counting scheme, treating next-to-leading-order interactions nonperturbatively and four-nucleon interactions as, at least, one order higher. The 5- and 6-helium ground states are analyzed with a power-counting scheme which includes the momentum-dependent next-to-leading order vertices perturbatively. All calculations include a full treatment of the Coulomb interaction. The assessment of numerical uncertainties associated with the solution of the few-body equation of motion through the Resonating Group Method parallels the report of the results for light nuclei in order to establish this method as practical for the analysis of systems with up to six particles interacting via short-range interactions.
We compute a model-independent correlation between the difference of neutron-neutron and proton-proton scattering lengths |a(nn)-a^C(pp)| and the splitting in binding energies between Helium-3 and tritium nuclei. We use the effective field theory wit hout explicit pions to show that this correlation relies only on the existence of large scattering lengths in the NN system. Our leading-order calculation, taken together with experimental values for binding energies and a^C(pp), yields a(nn)=-22.9 pm 4.1 fm.
68 - Johannes Kirscher 2011
Model-independent constraints for the neutron-triton and proton-Helium-3 scattering lengths are calculated with a leading-order interaction derived from an effective field theory without explicit pions. Using the singlet neutron-proton scattering len gth, the deuteron, and the triton binding energy as input, the predictions $ants=9.2pm2.6 $fm, $antt=7.6pm1.6 $fm, $aphes=3.6pm0.32 $fm, and $aphet=3.1pm 0.23 $fm are obtained. The calculations employ the resonating group method and include the Coulomb interaction when appropriate. The theoretical uncertainty is assessed via a variation of the regulator parameter of the short-distance interaction from $400 $MeV to $1.6 $GeV. The phase-shift and scattering-length results for the proton-Helium-3 system are consistent with a recent phase shift analysis and with model calculations. For neutron-triton, the results for the scattering lengths in both singlet and triplet channels are significantly smaller than suggested by R-matrix and partial-wave-analysis extractions from data. For a better understanding of this discrepancy, the sensitivity of the low-energy four-body scattering system to variations in the neutron-neutron and proton-proton two-nucleon scattering lengths is calculated. Induced by strong charge-symmetry-breaking contact interactions, this dependence is found insignificant. In contrast, a strong correlation between the neutron-triton scattering length and the triton binding energy analogous to the Phillips line is found.
A systematic connection between QCD and nuclear few- and many-body properties in the form of the Effective Field Theory without pions is applied to $Ale 6$ nuclei to determine its range of applicability. We present results at next-to-leading order fo r the Tjon correlation and for a correlation between the singlet S-wave $^3$He-neutron scattering length and the triton binding energy. In the A=6 sector we performed leading order calculations for the binding energy and the charge and matter radii of the halo nucleus $^6$He. Also at leading order, the doublet S-wave 4-He-neutron phase shifts are compared with R-matrix data. These analysis provide evidence for a sufficiently fast convergence of the effective field theory, in particular, our results in $Ale 4$ predict an expansion parameter of about 1/3, and they converge to data within the predicted uncertainty band at this order. A properly adjusted three-body contact force which we include together with the Coulomb interaction in all calculations is found to correctly renormalize the pion-less theory at leading- and next-to-leading order, i.e. the power counting does not require four-body forces at the respective order.
The Effective Field Theory without pions at next-to-leading order is used to analyze universal bound state and scattering properties of the 3- and 4-nucleon system. Results of a variety of phase shift equivalent nuclear potentials are presented for b ound state properties of 3H and 4He, and for the singlet S-wave 3He-neutron scattering length a_0(3He-n). The calculations are performed with the Refined Resonating Group Method and include a full treatment of the Coulomb interaction and the leading-order 3-nucleon interaction. The results compare favorably with data and values from AV18(+UIX) model calculations. A new correlation between a_0(3He-n) and the 3H binding energy is found. Furthermore, we confirm at next-to-leading order the correlations, already found at leading-order, between the 3H binding energy and the 3H charge radius, and the Tjon line. With the 3H binding energy as input, we get predictions of the Effective Field Theory without pions at next-to-leading order for the root mean square charge radius of 3H of (1.6pm 0.2) fm, for the 4He binding energy of (28pm 2.5) MeV, and for Re(a_0(3He-n)) of (7.5pm 0.6)fm. Including the Coulomb interaction, the splitting in binding energy between 3H and 3He is found to be (0.66pm 0.03) MeV. The discrepancy to data of (0.10mp 0.03) MeV is model independently attributed to higher order charge independence breaking interactions. We also demonstrate that different results for the same observable stem from higher order effects, and carefully assess that numerical uncertainties are negligible. Our results demonstrate the convergence and usefulness of the pion-less theory at next-to-leading order in the 4He channel. We conclude that no 4-nucleon interaction is needed to renormalize the theory at next-to-leading order in the 4-nucleon sector.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا