ترغب بنشر مسار تعليمي؟ اضغط هنا

According to the world view of macrorealism, the properties of a given system exist prior to and independent of measurement, which is incompatible with quantum mechanics. Leggett and Garg put forward a practical criterion capable of identifying viola tions of macrorealism, and so far experiments performed on microscopic and mesoscopic systems have always ruled out in favor of quantum mechanics. However, a macrorealist can always assign the cause of such violations to the perturbation that measurements effect on such small systems, and hence a definitive test would require using non-invasive measurements, preferably on macroscopic objects, where such measurements seem more plausible. However, the generation of truly macroscopic quantum superposition states capable of violating macrorealism remains a big challenge. In this work we propose a setup that makes use of measurements on the polarization of light, a property which has been extensively manipulated both in classical and quantum contexts, hence establishing the perfect link between the microscopic and macroscopic worlds. In particular, we use Leggett-Garg inequalities and the criterion of no-signaling in time to study the macrorealistic character of light polarization for different kinds of measurements, in particular with different degrees of coarse-graining. Our proposal is non-invasive for coherent input states by construction. We show for states with well defined photon number in two orthogonal polarization modes, that there always exists a way of making the measurement sufficiently coarse-grained so that a violation of macrorealism becomes arbitrarily small, while sufficiently sharp measurements can always lead to a significant violation.
The wave-particle duality dates back to Einsteins explanation of the photoelectric effect through quanta of light and de Broglies hypothesis of matter waves. Quantum mechanics uses an abstract description for the behavior of physical systems such as photons, electrons, or atoms. Whether quantum predictions for single systems in an interferometric experiment allow an intuitive understanding in terms of the particle or wave picture, depends on the specific configuration which is being used. In principle, this leaves open the possibility that quantum systems always either behave definitely as a particle or definitely as a wave in every experimental run by a priori adapting to the specific experimental situation. This is precisely what is tried to be excluded by delayed-choice experiments, in which the observer chooses to reveal the particle or wave character -- or even a continuous transformation between the two -- of a quantum system at a late stage of the experiment. We review the history of delayed-choice gedanken experiments, which can be traced back to the early days of quantum mechanics. Then we discuss their experimental realizations, in particular Wheelers delayed choice in interferometric setups as well as delayed-choice quantum erasure and entanglement swapping. The latter is particularly interesting, because it elevates the wave-particle duality of a single quantum system to an entanglement-separability duality of multiple systems.
The counterintuitive features of quantum physics challenge many common-sense assumptions. In an interferometric quantum eraser experiment, one can actively choose whether or not to erase which-path information, a particle feature, of one quantum syst em and thus observe its wave feature via interference or not by performing a suitable measurement on a distant quantum system entangled with it. In all experiments performed to date, this choice took place either in the past or, in some delayed-choice arrangements, in the future of the interference. Thus in principle, physical communications between choice and interference were not excluded. Here we report a quantum eraser experiment, in which by enforcing Einstein locality no such communication is possible. This is achieved by independent active choices, which are space-like separated from the interference. Our setup employs hybrid path-polarization entangled photon pairs which are distributed over an optical fiber link of 55 m in one experiment, or over a free-space link of 144 km in another. No naive realistic picture is compatible with our results because whether a quantum could be seen as showing particle- or wave-like behavior would depend on a causally disconnected choice. It is therefore suggestive to abandon such pictures altogether.
Bells theorem shows that local realistic theories place strong restrictions on observable correlations between different systems, giving rise to Bells inequality which can be violated in experiments using entangled quantum states. Bells theorem is ba sed on the assumptions of realism, locality, and the freedom to choose between measurement settings. In experimental tests, loopholes arise which allow observed violations to still be explained by local realistic theories. Violating Bells inequality while simultaneously closing all such loopholes is one of the most significant still open challenges in fundamental physics today. In this paper, we present an experiment that violates Bells inequality while simultaneously closing the locality loophole and addressing the freedom-of-choice loophole, also closing the latter within a reasonable set of assumptions. We also explain that the locality and freedom-of-choice loopholes can be closed only within non-determinism, i.e. in the context of stochastic local realism.
We demonstrate hybrid entanglement of photon pairs via the experimental violation of a Bell inequality with two different degrees of freedom (DOF), namely the path (linear momentum) of one photon and the polarization of the other photon. Hybrid entan gled photon pairs are created by Spontaneous Parametric Down Conversion and coherent polarization to path conversion for one photon. For that photon, path superposition is analyzed, and polarization superposition for its twin photon. The correlations between these two measurements give an S-parameter of S=2.653+/-0.027 in a CHSH inequality and thus violate local realism for two different DOF by more than 24 standard deviations. This experimentally supports the idea that entanglement is a fundamental concept which is indifferent to the specific physical realization of Hilbert space.
The European Space Agency (ESA) has supported a range of studies in the field of quantum physics and quantum information science in space for several years, and consequently we have submitted the mission proposal Space-QUEST (Quantum Entanglement for Space Experiments) to the European Life and Physical Sciences in Space Program. We propose to perform space-to-ground quantum communication tests from the International Space Station (ISS). We present the proposed experiments in space as well as the design of a space based quantum communication payload.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا