ترغب بنشر مسار تعليمي؟ اضغط هنا

We present results of more than three decades of timing measurements of the first known binary pulsar, PSR B1913+16. Like most other pulsars, its rotational behavior over such long time scales is significantly affected by small-scale irregularities n ot explicitly accounted for in a deterministic model. Nevertheless, the physically important astrometric, spin, and orbital parameters are well determined and well decoupled from the timing noise. We have determined a significant result for proper motion, $mu_{alpha} = -1.43pm0.13$, $mu_{delta}=-0.70pm0.13$ mas yr$^{-1}$. The pulsar exhibited a small timing glitch in May 2003, with ${Delta f}/f=3.7times10^{-11}$, and a smaller timing peculiarity in mid-1992. A relativistic solution for orbital parameters yields improved mass estimates for the pulsar and its companion, $m_1=1.4398pm0.0002 M_{sun}$ and $m_2=1.3886pm0.0002 M_{sun}$. The systems orbital period has been decreasing at a rate $0.997pm0.002$ times that predicted as a result of gravitational radiation damping in general relativity. As we have shown before, this result provides conclusive evidence for the existence of gravitational radiation as predicted by Einsteins theory.
In order to study precession and interstellar magnetic field variations, we measured the polarized position angle of 81 pulsars at several-month intervals for four years. We show that the uncertainties in a single-epoch measurement of position angle is usually dominated by random pulse-to-pulse jitter of the polarized subpulses. Even with these uncertainties, we find that the position angle variations in 19 pulsars are significantly better fitted (at the 3 {sigma} level) by a sinusoid than by a constant. Such variations could be caused by precession, which would then indicate periods of ~ (200 - 1300) d and amplitudes of ~(1 - 12) degrees. We narrow this collection to four pulsars that show the most convincing evidence of sinusoidal variation in position angle. Also, in a handful of pulsars, single discrepant position angle measurements are observed which may result from the line of sight passing across a discrete ionized, magnetized structure. We calculate the standard deviation of position angle measurements from the mean for each pulsar, and relate these to limits on precession and interstellar magnetic field variations.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا