ترغب بنشر مسار تعليمي؟ اضغط هنا

For dyons in heterotic string theory compactified on a six-torus, with electric charge vector Q and magnetic charge vector P, the positive integer I = g.c.d.(Q wedge P) is an invariant of the U-duality group. We propose the microscopic theory for com puting the spectrum of all dyons for all values of I, generalizing earlier results that exist only for the simplest case of I=1. Our derivation uses a combination of arguments from duality, 4d-5d lift, and a careful analysis of fermionic zero modes. The resulting degeneracy agrees with the black hole degeneracy for large charges and with the degeneracy of field-theory dyons for small charges. It naturally satisfies several physical requirements including integrality and duality invariance. As a byproduct, we also derive the microscopic (0,4) superconformal field theory relevant for computing the spectrum of five-dimensional Strominger-Vafa black holes in ALE backgrounds and count the resulting degeneracies.
This paper introduces a proposal for a Proof Carrying Code (PCC) architecture called Lissom. Started as a challenge for final year Computing students, Lissom was thought as a mean to prove to a sceptic community, and in particular to students, that f ormal verification tools can be put to practice in a realistic environment, and be used to solve complex and concrete problems. The attractiveness of the problems that PCC addresses has already brought students to show interest in this project.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا