ترغب بنشر مسار تعليمي؟ اضغط هنا

The maximum drop size of a permutation $pi$ of $[n]={1,2,ldots, n}$ is defined to be the maximum value of $i-pi(i)$. Chung, Claesson, Dukes and Graham obtained polynomials $P_k(x)$ that can be used to determine the number of permutations of $[n]$ wit h $d$ descents and maximum drop size not larger than $k$. Furthermore, Chung and Graham gave combinatorial interpretations of the coefficients of $Q_k(x)=x^k P_k(x)$ and $R_{n,k}(x)=Q_k(x)(1+x+cdots+x^k)^{n-k}$, and raised the question of finding a bijective proof of the symmetry property of $R_{n,k}(x)$. In this paper, we establish a bijection $varphi$ on $A_{n,k}$, where $A_{n,k}$ is the set of permutations of $[n]$ and maximum drop size not larger than $k$. The map $varphi$ remains to be a bijection between certain subsets of $A_{n,k}$. %related to the symmetry property. This provides an answer to the question of Chung and Graham. The second result of this paper is a proof of a conjecture of Hyatt concerning the unimodality of polynomials in connection with the number of signed permutations of $[n]$ with $d$ type $B$ descents and the type $B$ maximum drop size not greater than $k$.
An alternating permutation of length $n$ is a permutation $pi=pi_1 pi_2 ... pi_n$ such that $pi_1 < pi_2 > pi_3 < pi_4 > ...$. Let $A_n$ denote set of alternating permutations of ${1,2,..., n}$, and let $A_n(sigma)$ be set of alternating permutations in $A_n$ that avoid a pattern $sigma$. Recently, Lewis used generating trees to enumerate $A_{2n}(1234)$, $A_{2n}(2143)$ and $A_{2n+1}(2143)$, and he posed several conjectures on the Wilf-equivalence of alternating permutations avoiding certain patterns. Some of these conjectures have been proved by Bona, Xu and Yan. In this paper, we prove the two relations $|A_{2n+1}(1243)|=|A_{2n+1}(2143)|$ and $|A_{2n}(4312)|=|A_{2n}(1234)|$ as conjectured by Lewis.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا