ترغب بنشر مسار تعليمي؟ اضغط هنا

The NASA space telescope Kepler has provided unprecedented time-series observations which have revolutionised the field of asteroseismology, i.e. the use of stellar oscillations to probe the interior of stars. The Kepler-data include observations of stars in open clusters, which are particularly interesting for asteroseismology. One of the clusters observed with Kepler is NGC 6811, which is the target of the present paper. However, apart from high-precision time-series observations, sounding the interiors of stars in open clusters by means of asteroseismology also requires accurate and precise atmospheric parameters as well as cluster membership indicators for the individual stars. We use medium-resolution (R~25,000) spectroscopic observations, and three independent analysis methods, to derive effective temperatures, surface gravities, metallicities, projected rotational velocities and radial velocities, for 15 stars in the field of the open cluster NGC 6811. We discover two double-lined and three single-lined spectroscopic binaries. Eight stars are classified as either certain or very probable cluster members, and three stars are classified as non-members. For four stars, cluster membership could not been assessed. Five of the observed stars are G-type giants which are located in the colour-magnitude diagram in the region of the red clump of the cluster. Two of these stars are surely identified as red clump stars for the first time. For those five stars, we provide chemical abundances of 31 elements. The mean radial-velocity of NGC 6811 is found to be +6.68$pm$0.08 km s$^{-1}$ and the mean metallicity and overall abundance pattern are shown to be very close to solar with an exception of Ba which we find to be overabundant.
Stellar structure and evolution can be studied in great detail by asteroseismic methods, provided data of high precision are available. We determine the effective temperature (Teff), surface gravity (log g), metallicity, and the projected rotational velocity (v sin i) of 44 Kepler asteroseismic targets using our high-resolution (R > 20,000) spectroscopic observations; these parameters will then be used to compute asteroseismic models of these stars and to interpret the Kepler light curves.We use the method of cross correlation to measure the radial velocity (RV) of our targets, while atmospheric parameters are derived using the ROTFIT code and spectral synthesis method. We discover three double-lined spectroscopic binaries, HIP 94924, HIP 95115, and HIP 97321 - for the last system, we provide the orbital solution, and we report two suspected single-lined spectroscopic binaries, HIP94112 and HIP 96062. For all stars from our sample we derive RV, v sin i, Teff, log g, and metallicity, and for six stars, we perform a detailed abundance analysis. A spectral classification is done for 33 targets. Finally, we show that the early-type star HIP 94472 is rotating slowly (v sin i = 13 kms/1) and we confirm its classification to the Am spectral type which makes it an interesting and promising target for asteroseismic modeling. The comparison of the results reported in this paper with the information in the Kepler Input Catalog (KIC) shows an urgent need for verification and refinement of the atmospheric parameters listed in the KIC. That refinement is crucial for making a full use of the data delivered by Kepler and can be achieved only by a detailed ground-based study.
We report on the ground-based follow-up program of spectroscopic and photometric observations of solar-like asteroseismic targets for the Kepler space mission. These stars constitute a large group of more than thousand objects which are the subject o f an intensive study of the Kepler Asteroseismic Science Consortium Working Group 1 (KASC WG-1). The main goal of this coordinated research is the determination of the fundamental stellar atmospheric parameters, which are used for the computing of their asteroseismic models, as well as for the verification of the Kepler Input Catalogue (KIC).
We present results of our 5-years-long program of ground-based spectroscopic and photometric observations of individual Kepler asteroseismic targets and the open clusters NGC6866 and NGC6811 from the Kepler field of view.We determined the effective t emperature, surface gravity, metallicity, the projected rotational velocity and the radial velocity of 119 Kepler asteroseismic targets for which we acquired high-resolution spectra. For many of these stars the derived atmospheric parameters agree with Teff, log g, and [Fe/H] from the Kepler Input Catalog (KIC) to within their error bars. Only for stars hotter than 7000K we notice significant differences between the effective temperature derived from spectroscopy and Teff given in the KIC. For 19 stars which we observed photoelectrically, we measured the interstellar reddening and we found it to be negligible. Finally, our discovery of the delta Sct and gamma Dor pulsating stars in the open cluster NGC6866 allowed us to discuss the frequency of the occurrence of gamma Dor stars in the open clusters of different age and metallicity and show that there are no correlations between these parameters.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا