ترغب بنشر مسار تعليمي؟ اضغط هنا

We attempt to build a model that describes the {it Fermi} galactic gamma-ray excess (FGCE) within a UV-complete Supersymmetric framework; we find this to be highly non-trivial. At the very least a successful Supersymmetric explanation must have sever al important ingredients in order to fit the data and satisfy other theoretical and experimental constraints. Under the assumption that a {it single} annihilation mediator is responsible for both the observed relic density as well as the FGCE, we show that the requirements are not easily satisfied in many TeV-scale SUSY models, but can be met with some model building effort in the general NMSSM with $sim 10$ parameters beyond the MSSM. We find that the data selects a particular region of the parameter space with a mostly singlino lightest Supersymmetric particle and a relatively light CP-odd Higgs boson that acts as the mediator for dark matter annihilation. We study the predictions for various observables within this parameter space, and find that searches for this light CP-odd state at the LHC, as well as searches for the direct detection of dark matter, are likely to be quite challenging. It is possible that a signature could be observed in the flavor sector; however, indirect detection remains the best probe of this scenario.
We provide a comprehensive, up-to-date analysis of possible New Physics contributions to the mass difference $Delta M_D$ in $D^0$-${bar D}^0$ mixing. We consider the most general low energy effective Hamiltonian and include leading order QCD running of effective operators. We then explore an extensive list of possible New Physics models that can generate these operators, which we organize as including Extra Fermions, Extra Gauge Bosons, Extra Scalars, Extra Space Dimensions and Extra Symmetries. For each model we place restrictions on the allowed parameter space using the recent evidence for observation of $D$ meson mixing. In many scenarios, we find strong constraints that surpass those from other search techniques and provide an important test of flavor changing neutral currents in the up-quark sector. We also review the recent BaBar and Belle findings, and describe the current status of the Standard Model predictions of $D^0$-${bar D}^0$ mixing.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا