ترغب بنشر مسار تعليمي؟ اضغط هنا

Despite the long history of image and video stitching research, existing academic and commercial solutions still produce strong artifacts. In this work, we propose a wide-baseline video stitching algorithm for linear camera arrays that is temporally stable and tolerant to strong parallax. Our key insight is that stitching can be cast as a problem of learning a smooth spatial interpolation between the input videos. To solve this problem, inspired by pushbroom cameras, we introduce a fast pushbroom interpolation layer and propose a novel pushbroom stitching network, which learns a dense flow field to smoothly align the multiple input videos for spatial interpolation. Our approach outperforms the state-of-the-art by a significant margin, as we show with a user study, and has immediate applications in many areas such as virtual reality, immersive telepresence, autonomous driving, and video surveillance.
105 - Chao Liu , Jinwei Gu , Kihwan Kim 2019
Depth sensing is crucial for 3D reconstruction and scene understanding. Active depth sensors provide dense metric measurements, but often suffer from limitations such as restricted operating ranges, low spatial resolution, sensor interference, and hi gh power consumption. In this paper, we propose a deep learning (DL) method to estimate per-pixel depth and its uncertainty continuously from a monocular video stream, with the goal of effectively turning an RGB camera into an RGB-D camera. Unlike prior DL-based methods, we estimate a depth probability distribution for each pixel rather than a single depth value, leading to an estimate of a 3D depth probability volume for each input frame. These depth probability volumes are accumulated over time under a Bayesian filtering framework as more incoming frames are processed sequentially, which effectively reduces depth uncertainty and improves accuracy, robustness, and temporal stability. Compared to prior work, the proposed approach achieves more accurate and stable results, and generalizes better to new datasets. Experimental results also show the output of our approach can be directly fed into classical RGB-D based 3D scanning methods for 3D scene reconstruction.
Inverse rendering aims to estimate physical attributes of a scene, e.g., reflectance, geometry, and lighting, from image(s). Inverse rendering has been studied primarily for single objects or with methods that solve for only one of the scene attribut es. We propose the first learning-based approach that jointly estimates albedo, normals, and lighting of an indoor scene from a single image. Our key contribution is the Residual Appearance Renderer (RAR), which can be trained to synthesize complex appearance effects (e.g., inter-reflection, cast shadows, near-field illumination, and realistic shading), which would be neglected otherwise. This enables us to perform self-supervised learning on real data using a reconstruction loss, based on re-synthesizing the input image from the estimated components. We finetune with real data after pretraining with synthetic data. To this end, we use physically-based rendering to create a large-scale synthetic dataset, which is a significant improvement over prior datasets. Experimental results show that our approach outperforms state-of-the-art methods that estimate one or more scene attributes.
Learning to insert an object instance into an image in a semantically coherent manner is a challenging and interesting problem. Solving it requires (a) determining a location to place an object in the scene and (b) determining its appearance at the l ocation. Such an object insertion model can potentially facilitate numerous image editing and scene parsing applications. In this paper, we propose an end-to-end trainable neural network for the task of inserting an object instance mask of a specified class into the semantic label map of an image. Our network consists of two generative modules where one determines where the inserted object mask should be (i.e., location and scale) and the other determines what the object mask shape (and pose) should look like. The two modules are connected together via a spatial transformation network and jointly trained. We devise a learning procedure that leverage both supervised and unsupervised data and show our model can insert an object at diverse locations with various appearances. We conduct extensive experimental validations with comparisons to strong baselines to verify the effectiveness of the proposed network.
In this paper, we propose spatial propagation networks for learning the affinity matrix for vision tasks. We show that by constructing a row/column linear propagation model, the spatially varying transformation matrix exactly constitutes an affinity matrix that models dense, global pairwise relationships of an image. Specifically, we develop a three-way connection for the linear propagation model, which (a) formulates a sparse transformation matrix, where all elements can be the output from a deep CNN, but (b) results in a dense affinity matrix that effectively models any task-specific pairwise similarity matrix. Instead of designing the similarity kernels according to image features of two points, we can directly output all the similarities in a purely data-driven manner. The spatial propagation network is a generic framework that can be applied to many affinity-related tasks, including but not limited to image matting, segmentation and colorization, to name a few. Essentially, the model can learn semantically-aware affinity values for high-level vision tasks due to the powerful learning capability of the deep neural network classifier. We validate the framework on the task of refinement for image segmentation boundaries. Experiments on the HELEN face parsing and PASCAL VOC-2012 semantic segmentation tasks show that the spatial propagation network provides a general, effective and efficient solution for generating high-quality segmentation results.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا