ترغب بنشر مسار تعليمي؟ اضغط هنا

94 - Yichao Yan , Jinpeng Li , Jie Qin 2021
Person search aims to simultaneously localize and identify a query person from realistic, uncropped images. To achieve this goal, state-of-the-art models typically add a re-id branch upon two-stage detectors like Faster R-CNN. Owing to the ROI-Align operation, this pipeline yields promising accuracy as re-id features are explicitly aligned with the corresponding object regions, but in the meantime, it introduces high computational overhead due to dense object anchors. In this work, we present an anchor-free approach to efficiently tackling this challenging task, by introducing the following dedicated designs. First, we select an anchor-free detector (i.e., FCOS) as the prototype of our framework. Due to the lack of dense object anchors, it exhibits significantly higher efficiency compared with existing person search models. Second, when directly accommodating this anchor-free detector for person search, there exist several major challenges in learning robust re-id features, which we summarize as the misalignment issues in different levels (i.e., scale, region, and task). To address these issues, we propose an aligned feature aggregation module to generate more discriminative and robust feature embeddings. Accordingly, we name our model as Feature-Aligned Person Search Network (AlignPS). Third, by investigating the advantages of both anchor-based and anchor-free models, we further augment AlignPS with an ROI-Align head, which significantly improves the robustness of re-id features while still keeping our model highly efficient. Extensive experiments conducted on two challenging benchmarks (i.e., CUHK-SYSU and PRW) demonstrate that our framework achieves state-of-the-art or competitive performance, while displaying higher efficiency. All the source codes, data, and trained models are available at: https://github.com/daodaofr/alignps.
Transformers have demonstrated great potential in computer vision tasks. To avoid dense computations of self-attentions in high-resolution visual data, some recent Transformer models adopt a hierarchical design, where self-attentions are only compute d within local windows. This design significantly improves the efficiency but lacks global feature reasoning in early stages. In this work, we design a multi-path structure of the Transformer, which enables local-to-global reasoning at multiple granularities in each stage. The proposed framework is computationally efficient and highly effective. With a marginal increasement in computational overhead, our model achieves notable improvements in both image classification and semantic segmentation. Code is available at https://github.com/ljpadam/LG-Transformer
Person search has recently emerged as a challenging task that jointly addresses pedestrian detection and person re-identification. Existing approaches follow a fully supervised setting where both bounding box and identity annotations are available. H owever, annotating identities is labor-intensive, limiting the practicability and scalability of current frameworks. This paper inventively considers weakly supervised person search with only bounding box annotations. We proposed the first framework to address this novel task, namely Context-Guided Person Search (CGPS), by investigating three levels of context clues (i.e., detection, memory and scene) in unconstrained natural images. The first two are employed to promote local and global discriminative capabilities, while the latter enhances clustering accuracy. Despite its simple design, our CGPS boosts the baseline model by 8.3% in mAP on CUHK-SYSU. Surprisingly, it even achieves comparable performance to two-step person search models, while displaying higher efficiency. Our code is available at https://github.com/ljpadam/CGPS.
In recent years, significant progress has been made in the research of facial landmark detection. However, few prior works have thoroughly discussed about models for practical applications. Instead, they often focus on improving a couple of issues at a time while ignoring the others. To bridge this gap, we aim to explore a practical model that is accurate, robust, efficient, generalizable, and end-to-end trainable at the same time. To this end, we first propose a baseline model equipped with one transformer decoder as detection head. In order to achieve a better accuracy, we further propose two lightweight modules, namely dynamic query initialization (DQInit) and query-aware memory (QAMem). Specifically, DQInit dynamically initializes the queries of decoder from the inputs, enabling the model to achieve as good accuracy as the ones with multiple decoder layers. QAMem is designed to enhance the discriminative ability of queries on low-resolution feature maps by assigning separate memory values to each query rather than a shared one. With the help of QAMem, our model removes the dependence on high-resolution feature maps and is still able to obtain superior accuracy. Extensive experiments and analysis on three popular benchmarks show the effectiveness and practical advantages of the proposed model. Notably, our model achieves new state of the art on WFLW as well as competitive results on 300W and COFW, while still running at 50+ FPS.
305 - Yichao Yan , Jinpeng Li , Jie Qin 2021
Person search aims to simultaneously localize and identify a query person from realistic, uncropped images, which can be regarded as the unified task of pedestrian detection and person re-identification (re-id). Most existing works employ two-stage d etectors like Faster-RCNN, yielding encouraging accuracy but with high computational overhead. In this work, we present the Feature-Aligned Person Search Network (AlignPS), the first anchor-free framework to efficiently tackle this challenging task. AlignPS explicitly addresses the major challenges, which we summarize as the misalignment issues in different levels (i.e., scale, region, and task), when accommodating an anchor-free detector for this task. More specifically, we propose an aligned feature aggregation module to generate more discriminative and robust feature embeddings by following a re-id first principle. Such a simple design directly improves the baseline anchor-free model on CUHK-SYSU by more than 20% in mAP. Moreover, AlignPS outperforms state-of-the-art two-stage methods, with a higher speed. Code is available at https://github.com/daodaofr/AlignPS
321 - Jinpeng Li , Yaling Tao , Ting Cai 2021
We exploit liver cancer prediction model using machine learning algorithms based on epidemiological data of over 55 thousand peoples from 2014 to the present. The best performance is an AUC of 0.71. We analyzed model parameters to investigate critica l risk factors that contribute the most to prediction.
Locating lesions is important in the computer-aided diagnosis of X-ray images. However, box-level annotation is time-consuming and laborious. How to locate lesions accurately with few, or even without careful annotations is an urgent problem. Althoug h several works have approached this problem with weakly-supervised methods, the performance needs to be improved. One obstacle is that general weakly-supervised methods have failed to consider the characteristics of X-ray images, such as the highly-structural attribute. We therefore propose the Cross-chest Graph (CCG), which improves the performance of automatic lesion detection by imitating doctors training and decision-making process. CCG models the intra-image relationship between different anatomical areas by leveraging the structural information to simulate the doctors habit of observing different areas. Meanwhile, the relationship between any pair of images is modeled by a knowledge-reasoning module to simulate the doctors habit of comparing multiple images. We integrate intra-image and inter-image information into a unified end-to-end framework. Experimental results on the NIH Chest-14 database (112,120 frontal-view X-ray images with 14 diseases) demonstrate that the proposed method achieves state-of-the-art performance in weakly-supervised localization of lesions by absorbing professional knowledge in the medical field.
In emotion recognition, it is difficult to recognize humans emotional states using just a single modality. Besides, the annotation of physiological emotional data is particularly expensive. These two aspects make the building of effective emotion rec ognition model challenging. In this paper, we first build a multi-view deep generative model to simulate the generative process of multi-modality emotional data. By imposing a mixture of Gaussians assumption on the posterior approximation of the latent variables, our model can learn the shared deep representation from multiple modalities. To solve the labeled-data-scarcity problem, we further extend our multi-view model to semi-supervised learning scenario by casting the semi-supervised classification problem as a specialized missing data imputation task. Our semi-supervised multi-view deep generative framework can leverage both labeled and unlabeled data from multiple modalities, where the weight factor for each modality can be learned automatically. Compared with previous emotion recognition methods, our method is more robust and flexible. The experiments conducted on two real multi-modal emotion datasets have demonstrated the superiority of our framework over a number of competitors.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا