ترغب بنشر مسار تعليمي؟ اضغط هنا

In this paper, we are concerned with backward doubly stochastic differential evolutionary systems (BDSDESs for short). By using a variational approach based on the monotone operator theory, we prove the existence and uniqueness of the solutions for B DSDESs. We also establish an It^o formula for the Banach space-valued BDSDESs.
109 - Jinniao Qiu , Wenning Wei 2013
This paper is concerned with the quasi-linear reflected backward stochastic partial differential equation (RBSPDE for short). Basing on the theory of backward stochastic partial differential equation and the parabolic capacity and potential, we first associate the RBSPDE to a variational problem, and via the penalization method, we prove the existence and uniqueness of the solution for linear RBSPDE with Lapalacian leading coefficients. With the continuity approach, we further obtain the well-posedness of general quasi-linear RBSPDEs. Related results, including It^o formulas for backward stochastic partial differential equations with random measures, the comparison principle for solutions of RBSPDEs and the connections with reflected backward stochastic differential equations and optimal stopping problems, are addressed as well.
A coupled forward-backward stochastic differential system (FBSDS) is formulated in spaces of fields for the incompressible Navier-Stokes equation in the whole space. It is shown to have a unique local solution, and further if either the Reynolds numb er is small or the dimension of the forward stochastic differential equation is equal to two, it can be shown to have a unique global solution. These results are shown with probabilistic arguments to imply the known existence and uniqueness results for the Navier-Stokes equation, and thus provide probabilistic formulas to the latter. Related results and the maximum principle are also addressed for partial differential equations (PDEs) of Burgers type. Moreover, from truncating the time interval of the above FBSDS, approximate solution is derived for the Navier-Stokes equation by a new class of FBSDSs and their associated PDEs; our probabilistic formula is also bridged to the probabilistic Lagrangian representations for the velocity field, given by Constantin and Iyer (Commun. Pure Appl. Math. 61: 330--345, 2008) and Zhang (Probab. Theory Relat. Fields 148: 305--332, 2010) ; finally, the solution of the Navier-Stokes equation is shown to be a critical point of controlled forward-backward stochastic differential equations.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا