ترغب بنشر مسار تعليمي؟ اضغط هنا

We propose a unitary precoding scheme, namely polar-precoding, to improve the performance of polar-coded MIMO systems. In contrast to the traditional design of MIMO precoding criteria, the proposed polar-precoding scheme relies on the emph{polarizati on criterion}. In particular, the precoding matrix design comprises two steps. After selecting a basic matrix for maximizing the capacity in the first step, we design a unitary matrix for maximizing the polarization effect among the data streams without degrading the capacity. Our simulation results show that the proposed polar-precoding scheme outperforms the state-of-the-art DFT precoding scheme.
In this letter, we propose a progressive rate-filling method as a framework to study agile construction of multilevel polar-coded modulation. We show that the bit indices within each component polar code can follow a fixed, precomputed ranking sequen ce, e.g., the Polar sequence in the 5G standard, while their allocated rates (i.e., the number of information bits of each component polar code) can be fast computed by exploiting the target sum-rate approximation and proper rate-filling methods. In particular, we develop two rate-filling strategies based on the capacity and the rate considering the finite block-length effect. The proposed construction methods can be performed independently of the actual channel condition with ${Oleft(mright)}$ ($m$ denotes the modulation order) complexity and robust to diverse modulation and coding schemes in the 5G standard, which is a desired feature for practical systems.
In this paper, the minimum weight distributions (MWDs) of polar codes and concatenated polar codes are exactly enumerated according to the distance property of codewords. We first propose a sphere constraint based enumeration method (SCEM) to analyze the MWD of polar codes with moderate complexity. The SCEM exploits the distance property that all the codewords with the identical Hamming weight are distributed on a spherical shell. Then, based on the SCEM and the Plotkins construction of polar codes, a sphere constraint based recursive enumeration method (SCREM) is proposed to recursively calculate the MWD with a lower complexity. Finally, we propose a parity-check SCEM (PC-SCEM) to analyze the MWD of concatenated polar codes by introducing the parity-check equations of outer codes. Moreover, due to the distance property of codewords, the proposed three methods can exactly enumerate all the codewords belonging to the MWD. The enumeration results show that the SCREM can enumerate the MWD of polar codes with code length up to $2^{14}$ and the PC-SCEM can be used to optimize CRC-polar concatenated codes.
In this letter, we explore the performance limits of short polar codes and find that the maximum likelihood (ML) performance of a simple CRC-polar concatenated scheme can approach the finite blocklength capacity. Then, in order to approach the ML per formance with a low average complexity, a CRC-aided hybrid decoding (CA-HD) algorithm is proposed and its decoding process is divided into two steps. In the first step, the received sequence is decoded by the adaptive successive cancellation list (ADSCL) decoding. In the second step, CRC-aided sphere decoding with a reasonable initial radius is used to decode the received sequence. To obtain the reasonable radius, the CRC bits of the survival paths in ADSCL are recalculated and the minimum Euclidean distance between the survival path and the received sequence is chosen as the initial radius. The simulation results show that CA-HD can achieve within about $0.025$dB of the finite blocklength capacity at the block error ratio $10^{-3}$ with code length $128$ and code rate $1/2$.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا