ترغب بنشر مسار تعليمي؟ اضغط هنا

This paper is concerned with detecting an integer parameter vector inside a box from a linear model that is corrupted with a noise vector following the Gaussian distribution. One of the commonly used detectors is the maximum likelihood detector, whic h is obtained by solving a box-constrained integer least squares problem, that is NP-hard. Two other popular detectors are the box-constrained rounding and Babai detectors due to their high efficiency of implementation. In this paper, we first present formulas for the success probabilities (the probabilities of correct detection) of these three detectors for two different situations: the integer parameter vector is deterministic and is uniformly distributed over the constraint box. Then, we give two simple examples to respectively show that the success probability of the box-constrained rounding detector can be larger than that of the box-constrained Babai detector and the latter can be larger than the success probability of the maximum likelihood detector when the parameter vector is deterministic, and prove that the success probability of the box-constrained rounding detector is always not larger than that of the box-constrained Babai detector when the parameter vector is uniformly distributed over the constraint box. Some relations between the results for the box constrained and ordinary cases are presented, and two bounds on the success probability of the maximum likelihood detector, which can easily be computed, are developed. Finally, simulation results are provided to illustrate our main theoretical findings.
109 - Jinming Wen , Rui Zhang , 2020
Exact recovery of $K$-sparse signals $x in mathbb{R}^{n}$ from linear measurements $y=Ax$, where $Ain mathbb{R}^{mtimes n}$ is a sensing matrix, arises from many applications. The orthogonal matching pursuit (OMP) algorithm is widely used for reconst ructing $x$. A fundamental question in the performance analysis of OMP is the characterizations of the probability of exact recovery of $x$ for random matrix $A$ and the minimal $m$ to guarantee a target recovery performance. In many practical applications, in addition to sparsity, $x$ also has some additional properties. This paper shows that these properties can be used to refine the answer to the above question. In this paper, we first show that the prior information of the nonzero entries of $x$ can be used to provide an upper bound on $|x|_1^2/|x|_2^2$. Then, we use this upper bound to develop a lower bound on the probability of exact recovery of $x$ using OMP in $K$ iterations. Furthermore, we develop a lower bound on the number of measurements $m$ to guarantee that the exact recovery probability using $K$ iterations of OMP is no smaller than a given target probability. Finally, we show that when $K=O(sqrt{ln n})$, as both $n$ and $K$ go to infinity, for any $0<zetaleq 1/sqrt{pi}$, $m=2Kln (n/zeta)$ measurements are sufficient to ensure that the probability of exact recovering any $K$-sparse $x$ is no lower than $1-zeta$ with $K$ iterations of OMP. For $K$-sparse $alpha$-strongly decaying signals and for $K$-sparse $x$ whose nonzero entries independently and identically follow the Gaussian distribution, the number of measurements sufficient for exact recovery with probability no lower than $1-zeta$ reduces further to $m=(sqrt{K}+4sqrt{frac{alpha+1}{alpha-1}ln(n/zeta)})^2$ and asymptotically $mapprox 1.9Kln (n/zeta)$, respectively.
Lattice reduction is a popular preprocessing strategy in multiple-input multiple-output (MIMO) detection. In a quest for developing a low-complexity reduction algorithm for large-scale problems, this paper investigates a new framework called sequenti al reduction (SR), which aims to reduce the lengths of all basis vectors. The performance upper bounds of the strongest reduction in SR are given when the lattice dimension is no larger than 4. The proposed new framework enables the implementation of a hash-based low-complexity lattice reduction algorithm, which becomes especially tempting when applied to large-scale MIMO detection. Simulation results show that, compared to other reduction algorithms, the hash-based SR algorithm exhibits the lowest complexity while maintaining comparable error performance.
180 - Jinming Wen , Wei Yu 2019
The orthogonal matching pursuit (OMP) algorithm is a commonly used algorithm for recovering $K$-sparse signals $xin mathbb{R}^{n}$ from linear model $y=Ax$, where $Ain mathbb{R}^{mtimes n}$ is a sensing matrix. A fundamental question in the performan ce analysis of OMP is the characterization of the probability that it can exactly recover $x$ for random matrix $A$. Although in many practical applications, in addition to the sparsity, $x$ usually also has some additional property (for example, the nonzero entries of $x$ independently and identically follow the Gaussian distribution), none of existing analysis uses these properties to answer the above question. In this paper, we first show that the prior distribution information of $x$ can be used to provide an upper bound on $|x|_1^2/|x|_2^2$, and then explore the bound to develop a better lower bound on the probability of exact recovery with OMP in $K$ iterations. Simulation tests are presented to illustrate the superiority of the new bound.
68 - Jinming Wen , Chao Tong , Shi Bai 2018
Zero-forcing (ZF) decoder is a commonly used approximation solution of the integer least squares problem which arises in communications and many other applications. Numerically simulations have shown that the LLL reduction can usually improve the suc cess probability $P_{ZF}$ of the ZF decoder. In this paper, we first rigorously show that both SQRD and V-BLAST, two commonly used lattice reductions, have no effect on $P_{ZF}$. Then, we show that LLL reduction can improve $P_{ZF}$ when $n=2$, we also analyze how the parameter $delta$ in the LLL reduction affects the enhancement of $P_{ZF}$. Finally, an example is given which shows that the LLL reduction decrease $P_{ZF}$ when $ngeq3$.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا