ترغب بنشر مسار تعليمي؟ اضغط هنا

We present the optical spectroscopic observations of X Per from 1999 to 2013 with the 2.16m telescope at Xinglong Station and the 2.4m telescope at Lijiang station, National Astronomical Observatories of China. Combining with the public optical photo metric data, we find certain epochs of anti-correlations between the optical brightness and the intensity of the H{alpha} and HeI 6678 lines, which may be attributed to the mass ejections from the Be star. Alternative explanations are however also possible. The variability of FeII 6317 line in the spectra of X Per might be also caused by the shocked waves formed after the mass ejections from the Be star. The X-ray activities of the system might also be connected with the mass ejection events from the Be star. When the ejected materials were transported from the surface of the Be star to the orbit of neutron star, an X-ray flare could be observed in its X-ray light curves. We use the neutron star as a probe to constrain the motion of the ejected material in the circumstellar disk. With the diffusion time of the ejected material from the surface of Be star to the orbit of neutron star, the viscosity parameter {alpha} of the circumstellar disk is estimated to be 0.39 and 0.28 for the different time, indicating that the disk around Be star may be truncated by the neutron star at the 2:1 resonance radius and Type I X-ray outburst is unlikely to be observed in X Per.
We present and analyze the optical photometric and spectroscopic data of the Be/X-ray binary MXB 0656-072 from 2006 to 2009. A 101.2-day orbital period is found, for the first time, from the present public X-ray data(Swift/BAT and RXTE/ASM). The anti -correlation between the H$alpha$ emission and the $UBV$ brightness of MXB 0656$-$072 during our 2007 observations indicates that a mass ejection event took place in the system. After the mass ejection, a low-density region might develop around the Oe star. With the outward motion of the circumstellar disk, the outer part of the disk interacted with the neutron star around its periastron passage and a series of the X-ray outbursts were triggered between MJD 54350 and MJD 54850. The PCA--HEXTE spectra during the 2007-2008 X-ray outbursts could be well fitted by a cut-off power law with low energy absorption, together with an iron line around 6.4 keV, and a broad cyclotron resonance feature around 30 keV. The same variability of the soft and hard X-ray colors in 2.3-21 keV indicated that there were no overall changes in the spectral shape during the X-ray outbursts, which might be only connected with the changes of the mass-accretion rate onto the neutron star.
85 - Jingzhi Yan , Hui Li , 2011
We present the long-term optical spectroscopic observations on the Be/X-ray binary A0535+26 from 1992 to 2010. Combining with the public V-band photometric data, we find that each giant X-ray outburst occurred in a fading phase of the optical brightn ess. The anti-correlation between the optical brightness and the H$alpha$ intensity during our 2009 observations indicates a mass ejection event had taken place before the 2009 giant X-ray outburst, which might cause the formation of a low-density region in the inner part of the disk. The similar anti-correlation observed around 1996 September indicates the occurrence of the mass ejection, which might trigger the subsequent disk loss event in A0535+26.
We present the results of the spectroscopic observations of HDE 226868, the optical counterpart to the black hole X-ray binary Cyg X-1, from 2001 to 2006. We analyze the variabilities of the two components in the complex H$alpha$ line: one P-Cygni sh aped component which follows the motion of the supergiant and another emission component moving with an antiphase orbital motion relative to the supergiant, which is attributed to a focused-stellar wind. The results of KOREL disentangling of our spectra indicate that the focused stellar wind is responsible for the major part of the variability of the H$alpha$ emission line. The emission of the supergiant component had a small difference between the low/hard and high/soft states, while the focused wind component became strong in the low/hard state and weak in the high/soft state. The wind is nearly undisturbed by the X-ray photoionization during the low/hard state. However, during the high/soft state, the X-rays from the compact object could decelerate the line-driven wind and result in a high mass accretion rate, due to the effect of the X-ray photoionization. The X-ray illuminating could also change the temperature profile of the stellar wind and increase its temperature, and thus decrease the H$alpha$ emissivity of the wind, which could explain the H$alpha$ variabilities of Cyg X-1 during different X-ray states.
We present the results of optical spectroscopic observations of CI Cam. Double-peaked profiles were simultaneously observed for the first time in the hydrogen Balmer, He {small I} $lambda$6678 and Fe {small II} lines during an observational run in 20 01 September. An intermediate viewing angle of the circumstellar disk around the B[e] star is consistent with our data. A significant decrease in the intensity of the H$alpha$ and He {small I} lines in our 2004 September observations might have been the precursor of a line outburst at the end of 2004. The remarkable increase in the intensity of all lines and the decrease in visual brightness in 2005 might be due to the environment filling with new material ejected during the outburst. The environment of CI Cam is influenced by mass loss from the B[e] star and the outburst of its compact companion.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا