ترغب بنشر مسار تعليمي؟ اضغط هنا

Two-dimensional (2D) transition metal dichalcogenides (TMDs), especially MoS2 and WS2 recently attract extensive attentions due to their rich physics and great potential applications. Superior to graphene, MS2 (M = Mo/W) monolayers have a native dire ct energy gap in visible frequency range. This promises great future of MS2 for optoelectronics. To exploit properties and further develop more applications, producing large-scale single crystals of MS2 by a facile method is highly demanded. Here, we report the synthesis of large-scale triangular single crystals of WS2 monolayer from a chemical vapor deposition process and systematic optical studies of such WS2 monolayers. The observations of high yield of light emission and valley-selective circular dichroism experimentally evidence the high optical quality of the WS2 monolayers. This work paves the road to fabricate large-scale single crystalline 2D semiconductors and study their fundamentals. It must be very meaningful for exploiting great potentials of WS2 for future optoelectronics.
Using terahertz time-domain spectroscopy, the real part of optical conductivity [$sigma_{1}(omega)$] of twisted bilayer graphene was obtained at different temperatures (10 -- 300 K) in the frequency range 0.3 -- 3 THz. On top of a Drude-like response , we see a strong peak in $sigma_{1} (omega)$ at $sim$2.7 THz. We analyze the overall Drude-like response using a disorder-dependent (unitary scattering) model, then attribute the peak at 2.7 THz to an enhanced density of states at that energy, that is caused by the presence of a van Hove singularity arising from a commensurate twisting of the two graphene layers.
Large scale synthesis of single layer graphene (SLG) by chemical vapor deposition (CVD) has received a lot of attention recently. However, CVD synthesis of AB stacked bi-layer graphene (BLG) is still a challenging work. Here we report synthesis of BL G homogeneously in large area by thermal CVD. The 2D Raman band of CVD BLG splits into four components, suggesting splitting of electronic bands due to strong interlayer coupling. The splitting of electronic bands in CVD BLG is further evidenced by the study of near infrared (NIR) absorption and carrier dynamics probed by transient absorption spectroscopy. Ultraviolet photoelectron spectroscopy invesigation also indiates CVD BLG possesses different electronic structures from those of CVD SLG. The growth mechanism of BLG is found to be related to catalystic activity of copper (Cu)surface, which is determined by purity of Cu foils employed in CVD process. Our work showsthat strongly coupled or even AB stacked BLG can be grown on Cu foils in large scale, which isof particular importance for device applications based on their split electronic bands
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا