ترغب بنشر مسار تعليمي؟ اضغط هنا

In condensed matter systems, higher temperatures typically disfavors ordered phases leading to an upper critical temperature for magnetism, superconductivity, and other phenomena. A notable exception is the Pomeranchuk effect in 3He, in which the liq uid ground state freezes upon increasing the temperature due to the large entropy of the paramagnetic solid phase. Here we show that a similar mechanism describes the finite temperature dynamics of spin and valley-isospins in magic-angle twisted bilayer graphene. Most strikingly a resistivity peak appears at high temperatures near superlattice filling factor nu = -1, despite no signs of a commensurate correlated phase appearing in the low-temperature limit. Tilted field magnetotransport and thermodynamic measurements of the inplane magnetic moment show that the resistivity peak is adiabatically connected to a finite-field magnetic phase transition at which the system develops finite isospin polarization. These data are suggestive of a Pomeranchuk-type mechanism, in which the entropy of disordered isospin moments in the ferromagnetic phase stabilizes it relative to an isospin unpolarized Fermi liquid phase at elevated temperatures. Measurements of the entropy, S/kB indeed find it to be of order unity per unit cell area, with a measurable fraction that is suppressed by an in-plane magnetic field consistent with a contribution from disordered physical spins. In contrast to 3He, however, no discontinuities are observed in the thermodynamic quantities across this transition. Our findings imply a small isospin stiffness, with implications for the nature of finite temperature transport as well as the mechanisms underlying isospin ordering and superconductivity in twisted bilayer graphene and related systems.
In bilayer graphene rotationally faulted to theta=1.1 degrees, interlayer tunneling and rotational misalignment conspire to create a pair of low energy flat band that have been found to host various correlated phenomena at partial filling. Most work to date has focused on the zero magnetic field phase diagram, with magnetic field (B) used as a probe of the B=0 band structure. Here, we show that twisted bilayer graphene (tBLG) in a B as low as 2T hosts a cascade of ferromagnetic Chern insulators with Chern number |C|=1,2 and 3. We argue that the emergence of the Chern insulators is driven by the interplay of the moire superlattice with the B, which endow the flat bands with a substructure of topologically nontrivial subbands characteristic of the Hofstadter butterfly. The new phases can be accounted for in a Stoner picture in which exchange interactions favor polarization into one or more spin- and valley-isospin flavors; in contrast to conventional quantum Hall ferromagnets, however, electrons polarize into between one and four copies of a single Hofstadter subband with Chern number C=-1. In the case of the C=pm3 insulators in particular, B catalyzes a first order phase transition from the spin- and valley-unpolarized B=0 state into the ferromagnetic state. Distinct from other moire heterostructures, tBLG realizes the strong-lattice limit of the Hofstadter problem and hosts Coulomb interactions that are comparable to the full bandwidth W and are consequently much stronger than the width of the individual Hofstadter subbands. In our experimental data, the dominance of Coulomb interactions manifests through the appearance of Chern insulating states with spontaneously broken superlattice symmetry at half filling of a C=-2 subband. Our experiments show that that tBLG may be an ideal venue to explore the strong interaction limit within partially filled Hofstadter bands.
When bilayer graphene is rotationally faulted to an angle $thetaapprox 1.1^circ$, theory predicts the formation of a flat electronic band and correlated insulating, superconducting, and ferromagnetic states have all been observed at partial band fill ing. The proximity of superconductivity to correlated insulators has suggested a close relationship between these states, reminiscent of the cuprates where superconductivity arises by doping a Mott insulator. Here, we show that superconductivity can appear without correlated insulating states. While both superconductivity and correlated insulating behavior are strongest near the flat band condition, superconductivity survives to larger detuning of the angle. Our observations are consistent with a competing phases picture, in which insulators and superconductivity arise from disparate mechanisms.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا