ترغب بنشر مسار تعليمي؟ اضغط هنا

The interfacial structures and interactions of two-dimensional (2D) materials on solid substrates are of fundamental importance for the fabrication and application of 2D materials. However, selection of a suitable solid substrate to grow 2D material, determination and control of the 2D material-substrate interface remain a big challenge due to the large diversity of possible configurations. Here, we propose a computational framework to select an appropriate substrate for epitaxial growth of 2D material and to predict possible 2D material-substrate interface structures and orientations using density functional theory calculations performed for all non-equivalent atomic structures satisfying the symmetry constraints. The approach was validated by the correct prediction of three experimentally reported 2D material-substrate interface systems with only the given information of two parent materials. Several possible interface configurations are also proposed based on this approach. We therefore construct a database that contains these interface systems and has been continuously expanding. This database serves as preliminary guidance for epitaxial growth and stabilization of new materials in experiments.
Being atomically thin and amenable to external controls, two-dimensional (2D) materials offer a new paradigm for the realization of patterned qubit fabrication and operation at room temperature for quantum information sciences applications. Here we s how that the antisite defect in 2D transition metal dichalcogenides (TMDs) can provide a controllable solid-state spin qubit system. Using high-throughput atomistic simulations, we identify several neutral antisite defects in TMDs that lie deep in the bulk band gap and host a paramagnetic triplet ground state. Our in-depth analysis reveals the presence of optical transitions and triplet-singlet intersystem crossing processes for fingerprinting these defect qubits. As an illustrative example, we discuss the initialization and readout principles of an antisite qubit in WS2, which is expected to be stable against interlayer interactions in a multilayer structure for qubit isolation and protection in future qubit-based devices. Our study opens a new pathway for creating scalable, room-temperature spin qubits in 2D TMDs.
Recent years have witnessed tremendous success in the discovery of topological states of matter. Particularly, sophisticated theoretical methods in time-reversal-invariant topological phases have been developed, leading to the comprehensive search of crystal database and the prediction of thousands of new topological materials. In contrast, the discovery of magnetic topological phases that break time reversal is still limited to several exemplary materials because the coexistence of magnetism and topological electronic band structure is rare in a single compound. To overcome this challenge, we propose an alternative approach to realize the quantum anomalous Hall (QAH) effect, a typical example of magnetic topological phase, via engineering two-dimensional (2D) magnetic van der Waals heterojunctions. Instead of a single magnetic topological material, we search for the combinations of two 2D (typically trivial) magnetic insulator compounds with specific band alignment so that they can together form a type-III heterojunction with topologically non-trivial band structure. By combining the data-driven materials search, first principles calculations, and the symmetry-based analytical models, we identify 8 type-III heterojunctions consisting of 2D ferromagnetic insulator materials from a family of 2D monolayer MXY compounds (M = metal atoms, X = S, Se, Te, Y = F, Cl, Br, I) as a set of candidates for the QAH effect. In particular, we directly calculate the topological invariant (Chern number) and chiral edge states in the MnNF/MnNCl heterojunction with ferromagnetic stacking. This work illustrates how data-driven material science can be combined with symmetry-based physical principles to guide the search for novel heterojunction-based quantum materials hosting the QAH effect and other exotic quantum states in general.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا