ترغب بنشر مسار تعليمي؟ اضغط هنا

In this work, we employ the $bar{partial}$-steepest descent method to investigate the Cauchy problem of the Wadati-Konno-Ichikawa (WKI) equation with initial conditions in weighted Sobolev space $mathcal{H}(mathbb{R})$. The long time asymptotic behav ior of the solution $q(x,t)$ is derived in a fixed space-time cone $S(y_{1},y_{2},v_{1},v_{2})={(y,t)inmathbb{R}^{2}: y=y_{0}+vt, ~y_{0}in[y_{1},y_{2}], ~vin[v_{1},v_{2}]}$. Based on the resulting asymptotic behavior, we prove the soliton resolution conjecture of the WKI equation which includes the soliton term confirmed by $N(mathcal{I})$-soliton on discrete spectrum and the $t^{-frac{1}{2}}$ order term on continuous spectrum with residual error up to $O(t^{-frac{3}{4}})$.
In this work, we investigate the Cauchy problem of the Wadati-Konno-Ichikawa (WKI) equation with finite density initial data. Employing the $bar{partial}$-generalization of Deift-Zhou nonlinear steepest descent method, we derive the long time asympto tic behavior of the solution $q(x,t)$ in space-time soliton region. Based on the resulting asymptotic behavior, the asymptotic approximation of the WKI equation is characterized with the soliton term confirmed by $N(I)$-soliton on discrete spectrum and the $t^{-frac{1}{2}}$ leading order term on continuous spectrum with residual error up to $O(t^{-frac{3}{4}})$. Our results also confirm the soliton resolution conjecture for the WKI equation with finite density initial data.
We extend the Riemann-Hilbert (RH) method to study the inverse scattering transformation and high-order pole solutions of the focusing and defocusing nonlocal (reverse-space-time) modified Korteweg-de Vries (mKdV) equations with nonzero boundary cond itions (NZBCs) at infinity and successfully find its multiple soliton solutions with one high-order pole and multiple high-order poles. By introducing the generalized residue formula, we overcome the difficulty caused by calculating the residue conditions corresponding to the higher-order poles. In accordance with the Laurent series of reflection coefficient and oscillation term, the determinant formula of the high-order pole solution with NZBCs is established. Finally, combined with specific parameters, the dynamic propagation behaviors of the high-order pole solutions are further analyzed and some very interesting phenomena are obtained, including kink solution, anti kink solution, rational solution and breathing-soliton solution.
The Cauchy problem of the modified nonlinear Schr{o}dinger (mNLS) equation with the finite density type initial data is investigated via $overline{partial}$ steepest descent method. In the soliton region of space-time $x/tin(5,7)$, the long-time asym ptotic behavior of the mNLS equation is derived for large times. Furthermore, for general initial data in a non-vanishing background, the soliton resolution conjecture for the mNLS equation is verified, which means that the asymptotic expansion of the solution can be characterized by finite number of soliton solutions as the time $t$ tends to infinity, and a residual error $mathcal {O}(t^{-3/4})$ is provided.
In this work, we extend the Riemann-Hilbert (RH) method in order to study the coupled modified Korteweg-de Vries equation (cmKdV) under nonzero boundary conditions (NZBCs), and successfully find its solutions with their various dynamic propagation be haviors. In the process of spectral analysis, it is necessary to introduce Riemann surface to avoid the discussion of multi-valued functions, and to obtain the analytical and asymptotic properties needed to establish the RH problem. The eigenfunction have a column that is not analytic in a given region, so we introduce the auxiliary eigenfunction and the adjoint matrix, which is necessary to derive the analytical eigenfunctions. The eigenfunctions have three kinds of symmetry, which leads to three kinds of symmetry of the scattering matrix, and the discrete spectrum is also divided into three categories by us. The asymptoticity of the modified eigenfunction is derived. Based on the analysis, the RH problem with four jump matrices in a given area is established, and the relationship between the cmKdV equation and the solution of the RH problem is revealed. The residue condition of reflection coefficient with simple pole is established. According to the classification of discrete spectrum, we discuss the soliton solutions corresponding to three kinds of discrete spectrum classification and their propagation behaviors in detail.
The Riemann-Hilbert (RH) problem is first developed to study the focusing nonlinear Schr{o}dinger (NLS) equation with multiple high-order poles under nonzero boundary conditions. Laurent expansion and Taylor series are employed to replace the residue s at the simple- and the second-poles. Further, the solution of RH problem is transformed into a closed system of algebraic equations, and the soliton solutions corresponding to the transmission coefficient $1/s_{11}(z)$ with an $N$-order pole are obtained by solving the algebraic system. Then, in a more general case, the transmission coefficient with multiple high-order poles is studied, and the corresponding solutions are obtained. In addition, for high-order pole, the propagation behavior of the soliton solution corresponding to a third-order pole is given as example.
We employ the $bar{partial}$-steepest descent method in order to investigate the Cauchy problem of the complex short pulse (CSP) equation with initial conditions in weighted Sobolev space $H^{1,1}(mathbb{R})={fin L^{2}(mathbb{R}): f,xfin L^{2}(mathbb {R})}$. The long time asymptotic behavior of the solution $u(x,t)$ is derived in a fixed space-time cone $S(x_{1},x_{2},v_{1},v_{2})={(x,t)inmathbb{R}^{2}: y=y_{0}+vt, ~y_{0}in[y_{1},y_{2}], ~vin[v_{1},v_{2}]}$. Based on the resulting asymptotic behavior, we prove the solution resolution conjecture of the CSP equation which includes the soliton term confirmed by $N(I)$-soliton on discrete spectrum and the $t^{-frac{1}{2}}$ order term on continuous spectrum with residual error up to $O(t^{-1})$.
In this work, the $overline{partial}$ steepest descent method is employed to investigate the soliton resolution for the Hirota equation with the initial value belong to weighted Sobolev space $H^{1,1}(mathbb{R})={fin L^{2}(mathbb{R}): f,xfin L^{2}(ma thbb{R})}$. The long-time asymptotic behavior of the solution $q(x,t)$ is derived in any fixed space-time cone $C(x_{1},x_{2},v_{1},v_{2})=left{(x,t)in mathbb{R}timesmathbb{R}: x=x_{0}+vt ~text{with}~ x_{0}in[x_{1},x_{2}]right}$. We show that solution resolution conjecture of the Hirota equation is characterized by the leading order term $mathcal {O}(t^{-1/2})$ in the continuous spectrum, $mathcal {N}(mathcal {I})$ soliton solutions in the discrete spectrum and error order $mathcal {O}(t^{-3/4})$ from the $overline{partial}$ equation.
In this work, we employ the $bar{partial}$ steepest descent method in order to study the Cauchy problem of the cgNLS equations with initial conditions in weighted Sobolev space $H^{1,1}(mathbb{R})={fin L^{2}(mathbb{R}): f,xfin L^{2}(mathbb{R})}$. The large time asymptotic behavior of the solution $u(x,t)$ and $v(x,t)$ are derived in a fixed space-time cone $S(x_{1},x_{2},v_{1},v_{2})={(x,t)inmathbb{R}^{2}: x=x_{0}+vt, ~x_{0}in[x_{1},x_{2}], ~vin[v_{1},v_{2}]}$. Based on the resulting asymptotic behavior, we prove the solution resolution conjecture of the cgNLS equations which contains the soliton term confirmed by $|mathcal{Z}(mathcal{I})|$-soliton on discrete spectrum and the $t^{-frac{1}{2}}$ order term on continuous spectrum with residual error up to $O(t^{-frac{3}{4}})$.
We consider a matrix Riemann-Hilbert problem for the sextic nonlinear Schr{o}dinger equation with a non-zero boundary conditions at infinity. Before analyzing the spectrum problem, we introduce a Riemann surface and uniformization coordinate variable in order to avoid multi-value problems. Based on a new complex plane, the direct scattering problem perform a detailed analysis of the analytical, asymptotic and symmetry properties of the Jost functions and the scattering matrix. Then, a generalized Riemann-Hilbert problem (RHP) is successfully established from the results of the direct scattering transform. In the inverse scattering problem, we discuss the discrete spectrum, residue condition, trace formula and theta condition under simple poles and double poles respectively, and further solve the solution of a generalized RHP. Finally, we derive the solution of the equation for the cases of different poles without reflection potential. In addition, we analyze the localized structures and dynamic behaviors of the resulting soliton solutions by taking some appropriate values of the parameters appeared in the solutions.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا