ترغب بنشر مسار تعليمي؟ اضغط هنا

99 - Kui Jin , Wei Hu , Beiyi Zhu 2015
Since the discovery of n-type copper oxide superconductors, the evolution of electron- and hole-bands and its relation to the superconductivity have been seen as a key factor in unveiling the mechanism of high-Tc superconductors. So far, the occurren ce of electrons and holes in n-type copper oxides has been achieved by chemical doping, pressure, and/or deoxygenation. However, the observed electronic properties are blurred by the concomitant effects such as change of lattice structure, disorder, etc. Here, we report on successful tuning the electronic band structure of n-type Pr2-xCexCuO4 (x = 0.15) ultrathin films, via the electric double layer transistor technique. Abnormal transport properties, such as multiple sign reversals of Hall resistivity in normal and mixed states, have been revealed within an electrostatic field in range of -2 V to +2 V, as well as varying the temperature and magnetic field. In the mixed state, the intrinsic anomalous Hall conductivity invokes the contribution of both electron and hole-bands as well as the energy dependent density of states near the Fermi level. The two-band model can also describe the normal state transport properties well, whereas the carrier concentrations of electrons and holes are always enhanced or depressed simultaneously in electric fields. This is in contrast to the scenario of Fermi surface reconstruction by antiferromagnetism, where an anti-correlation between electrons and holes is commonly expected. Our findings paint the picture where Coulomb repulsion plays an important role in the evolution of the electronic states in n-type cuprate superconductors.
427 - W. T. Jin , Wei Li , Y. Su 2015
The magnetic order of the localized Eu$^{2+}$ spins in optimally-doped Eu(Fe$_{1-x}$Ir$_{x}$)$_{2}$As$_{2}$ ($mathit{x}$ = 0.12) with superconducting transition temperature $mathit{T_{SC}}$ = 22 K was investigated by single-crystal neutron diffractio n. The Eu$^{2+}$ moments were found to be ferromagnetically aligned along the $mathit{c}$-direction with an ordered moment of 7.0(1) $mu_{B}$ well below the magnetic phase transition temperature $mathit{T_{C}}$ = 17 K. No evidence of the tetragonal-to-orthorhombic structural phase transition was found in this compound within the experimental uncertainty, in which the spin-density-wave (SDW) order of the Fe sublattice is supposed to be completely suppressed and the superconductivity gets fully developed. The ferromagnetic groud state of the Eu$^{2+}$ spins in Eu(Fe$_{0.88}$Ir$_{0.12}$)$_{2}$As$_{2}$ was supported by the first-principles density functional calculation. In addition, comparison of the electronic structure calculations between Eu(Fe$_{0.875}$Ir$_{0.125}$)$_{2}$As$_{2}$ and the parent compound EuFe$_{2}$As$_{2}$ indicates stronger hybridization and more expanded bandwith due to the Ir substitution, which together with the introduction of electrons might work against the Fe-SDW in favor of the superconductivity.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا