ترغب بنشر مسار تعليمي؟ اضغط هنا

107 - Jin Koda 2015
We report the discovery of 854 ultra diffuse galaxies (UDGs) in the Coma cluster using deep R band images, with partial B, i, and Halpha band coverage, obtained with the Subaru telescope. Many of them (332) are Milky Way-sized with very large effecti ve radii of r_e>1.5kpc. This study was motivated by the recent discovery of 47 UDGs by van-Dokkum et al. (2015); our discovery suggests >1,000 UDGs after accounting for the smaller Subaru field. The new UDGs show a distribution concentrated around the cluster center, strongly suggesting that the great majority are (likely longtime) cluster members. They are a passively evolving population, lying along the red sequence in the CM diagram with no Halpha signature. Star formation was, therefore, quenched in the past. They have exponential light profiles, effective radii re ~ 800 pc- 5 kpc, effective surface brightnesses mu_e(R)=25-28 mag arcsec-2, and stellar masses ~1x10^7 - 5x10^8Msun. There is also a population of nucleated UDGs. Some MW-sized UDGs appear closer to the cluster center than previously reported; their survival in the strong tidal field, despite their large sizes, possibly indicates a large dark matter fraction protecting the diffuse stellar component. The indicated baryon fraction ~<1% is less than the cosmic average, and thus the gas must have been removed from the possibly massive dark halo. The UDG population appears to be elevated in the Coma cluster compared to the field, indicating that the gas removal mechanism is related primarily to the cluster environment.
We report the discovery of a new dwarf galaxy (NGC6503-d1) during the Subaru extended ultraviolet (XUV) disk survey. It is a likely companion of the spiral galaxy NGC6503. The resolved images, in B, V, R, i, and Halpha, show an irregular appearance d ue to bright stars with underlying, smooth and unresolved stellar emission. It is classified as the transition type (dIrr/dSph). Its structural properties are similar to those of the dwarfs in the Local Group, with a V absolute magnitude ~ -10.5, half-light radius ~400 pc, and central surface brightness ~25.2. Despite the low stellar surface brightness environment, one HII region was detected, though its Halpha luminosity is low, indicating an absence of any appreciable O-stars at the current epoch. The presence of multiple stellar populations is indicated by the color-magnitude diagram of ~300 bright resolved stars and the total colors of the dwarf, with the majority of its total stellar mass ~4x10^6 Msun in an old stellar population.
We report a super-linear correlation for the star formation law based on new CO($J$=1-0) data from the CARMA and NOBEYAMA Nearby-galaxies (CANON) CO survey. The sample includes 10 nearby spiral galaxies, in which structures at sub-kpc scales are spat ially resolved. Combined with the star formation rate surface density traced by H$alpha$ and 24 $mu$m images, CO($J$=1-0) data provide a super-linear slope of $N$ = 1.3. The slope becomes even steeper ($N$ = 1.8) when the diffuse stellar and dust background emission is subtracted from the H$alpha$ and 24 $mu$m images. In contrast to the recent results with CO($J$=2-1) that found a constant star formation efficiency (SFE) in many spiral galaxies, these results suggest that the SFE is not independent of environment, but increases with molecular gas surface density. We suggest that the excitation of CO($J$=2-1) is likely enhanced in the regions with higher star formation and does not linearly trace the molecular gas mass. In addition, the diffuse emission contaminates the SFE measurement most in regions where star formation rate is law. These two effects can flatten the power law correlation and produce the apparent linear slope. The super linear slope from the CO($J$=1-0) analysis indicates that star formation is enhanced by non-linear processes in regions of high gas density, e.g., gravitational collapse and cloud-cloud collisions.
We resolve 182 individual giant molecular clouds (GMCs) larger than 2.5 $times$ 10$^{5}$ Msun in the inner disks of five large nearby spiral galaxies (NGC 2403, NGC 3031, NGC 4736, NGC 4826, and NGC 6946) to create the largest such sample of extragal actic GMCs within galaxies analogous to the Milky Way. Using a conservatively chosen sample of GMCs most likely to adhere to the virial assumption, we measure cloud sizes, velocity dispersions, and $^{12}$CO (J=1-0) luminosities and calculate cloud virial masses. The average conversion factor from CO flux to H$_{2}$ mass (or xcons) for each galaxy is 1-2 xcounits, all within a factor of two of the Milky Way disk value ($sim$2 xcounits). We find GMCs to be generally consistent within our errors between the galaxies and with Milky Way disk GMCs; the intrinsic scatter between clouds is of order a factor of two. Consistent with previous studies in the Local Group, we find a linear relationship between cloud virial mass and CO luminosity, supporting the assumption that the clouds in this GMC sample are gravitationally bound. We do not detect a significant population of GMCs with elevated velocity dispersions for their sizes, as has been detected in the Galactic center. Though the range of metallicities probed in this study is narrow, the average conversion factors of these galaxies will serve to anchor the high metallicity end of metallicity-xco trends measured using conversion factors in resolved clouds; this has been previously possible primarily with Milky Way measurements.
Recent observational results indicate that the functional shape of the spatially-resolved star formation-molecular gas density relation depends on the spatial scale considered. These results may indicate a fundamental role of sampling effects on scal es that are typically only a few times larger than those of the largest molecular clouds. To investigate the impact of this effect, we construct simple models for the distribution of molecular clouds in a typical star-forming spiral galaxy, and, assuming a power-law relation between SFR and cloud mass, explore a range of input parameters. We confirm that the slope and the scatter of the simulated SFR-molecular gas surface density relation depend on the size of the sub-galactic region considered, due to stochastic sampling of the molecular cloud mass function, and the effect is larger for steeper relations between SFR and molecular gas. There is a general trend for all slope values to tend to ~unity for region sizes larger than 1-2 kpc, irrespective of the input SFR-cloud relation. The region size of 1-2 kpc corresponds to the area where the cloud mass function becomes fully sampled. We quantify the effects of selection biases in data tracing the SFR, either as thresholds (i.e., clouds smaller than a given mass value do not form stars) or backgrounds (e.g., diffuse emission unrelated to current star formation is counted towards the SFR). Apparently discordant observational results are brought into agreement via this simple model, and the comparison of our simulations with data for a few galaxies supports a steep (>1) power law index between SFR and molecular gas.
We report deep Subaru Halpha observations of the XUV disk of M83. These new observations enable the first complete census of very young stellar clusters over the entire XUV disk. Combining Subaru and GALEX data with a stellar population synthesis mod el, we find that (1) the standard, but stochastically-sampled, initial mass function (IMF) is preferred over the truncated IMF, because there are low mass stellar clusters (10^{2-3}Msun) that host massive O-type stars; that (2) the standard Salpeter IMF and a simple aging effect explain the counts of FUV-bright and Halpha-bright clusters with masses >10^3Msun; and that (3) the Halpha to FUV flux ratio over the XUV disk supports the standard IMF. The Subaru Prime Focus Camera (Suprime-Cam) covers a large area even outside the XUV disk -- far beyond the detection limit of the HI gas. This enables us to statistically separate the stellar clusters in the disk from background contamination. The new data, model, and previous spectroscopic studies provide overall consistent results with respect to the internal dust extinction (Av~0.1 mag) and low metallicity (~0.2Zsun) using the dust extinction curve of SMC.
We present the largest sample to date of giant molecular clouds (GMCs) in a substantial spiral galaxy other than the Milky Way. We map the distribution of molecular gas with high resolution and image fidelity within the central 5 kpc of the spiral ga laxy NGC 6946 in the 12CO (J=1-0) transition. By combining observations from the Nobeyama Radio Observatory 45-meter single dish telescope and the Combined Array for Research in Millimeter Astronomy (CARMA) interferometer, we are able to obtain high image fidelity and accurate measurements of LCO compared with previous purely interferometric studies. We resolve individual giant molecular clouds (GMCs), measure their luminosities and virial masses, and derive Xco - the conversion factor from CO measurements to H2 masses - within individual clouds. On average, we find that Xco = 1.2 times 10^20 cm-2 / (K km s-1), which is consistent within our uncertainties with previously derived Galactic values as well as the value we derive for Galactic GMCs above our mass sensitivity limit. The properties of our GMCs are largely consistent with the trends observed for molecular clouds detected in the Milky Way disk, with the exception of six clouds detected within sim400 pc of the center of NGC 6946, which exhibit larger velocity dispersions for a given size and luminosity, as has also been observed at the Galactic center.
94 - Guilin Liu 2011
We have conducted interferometric observations with CARMA and an OTF mapping with the 45-m telescope at NRO in the CO (J=1-0) emission line of NGC 3521. Combining these new data, together with CARMA+NRO45 data for M51a and archival SINGS H$alpha$, 24 $mu$m, THINGS H I and GALEX FUV data for both galaxies, we investigate the empirical scaling law that connects the surface density of SFR and cold gas (the Schmidt-Kennicutt law) on a spatially-resolved basis. We argue that plausibly deriving SFR maps of nearby galaxies requires the diffuse stellar/dust background emission to be carefully subtracted. An approach to complete this task is presented and applied in our pixel-by-pixel analysis on both galaxies, showing that the controversial results whether the molecular S-K law is super-linear or basically linear is a result of removing or preserving the local background. In both galaxies, the power index of the molecular S-K law is 1.5-1.9 at the highest available resolution (230 pc), and decreases monotonically for decreasing resolution; while the scatter (mainly intrinsic) increases as the resolution becomes higher, indicating a trend for which the S-K law breaks down below some scale. Both quantities are systematically larger in M51a than in NGC 3521, but when plotted against the de-projected scale (delta_{dp}), they become highly consistent between the two galaxies, tentatively suggesting that the sub-kpc molecular S-K law in spiral galaxies depends only on the considered scale, without varying amongst spiral galaxies. A logarithmic function gamma_{H_2}=-1.1 log[delta_{dp}/kpc]+1.4 and a linear relation sigma_{H_2}=-0.2 [delta_{dp}/kpc]+0.7 are obtained through fitting to the M51a data, which describes both galaxies impressively well on sub-kpc scales. A larger sample of galaxies with better quality data are required to test the general applicability of these relations.
We present new $^{12}$CO(J=1-0) observations of the barred galaxy NGC 4303 using the Nobeyama 45m telescope (NRO45) and the Combined Array for Research in Millimeter-wave Astronomy (CARMA). The H$alpha$ images of barred spiral galaxies often show act ive star formation in spiral arms, but less so in bars. We quantify the difference by measuring star formation rate and efficiency at a scale where local star formation is spatially resolved. Our CO map covers the central 2$farcm$3 region of the galaxy; the combination of NRO45 and CARMA provides a high fidelity image, enabling accurate measurements of molecular gas surface density. We find that star formation rate and efficiency are twice as high in the spiral arms as in the bar. We discuss this difference in the context of the Kennicutt-Schimidt (KS) law, which indicates a constant star formation rate at a given gas surface density. The KS law breaks down at our native resolution ($sim$ 250 pc), and substantial smoothing (to 500 pc) is necessary to reproduce the KS law, although with greater scatter.
We present sensitive and high angular resolution CO(1-0) data obtained by the Combined Array for Research in Millimeter-wave Astronomy (CARMA) observations toward the nearby grand-design spiral galaxy M 51. The angular resolution of 0.7 corresponds t o 30 pc, which is similar to the typical size of Giant Molecular Clouds (GMCs), and the sensitivity is also high enough to detect typical GMCs. Within the 1 field of view centered on a spiral arm, a number of GMC-scale structures are detected as clumps. However, only a few clumps are found to be associated with each Giant Molecular Association (GMA), and more than 90% of the total flux is resolved out in our data. Considering the high sensitivity and resolution of our data, these results indicate that GMAs are not mere confusion of GMCs but plausibly smooth structures. In addition, we have found that the most massive clumps are located downstream of the spiral arm, which suggests that they are at a later stage of molecular cloud evolution across the arm and plausibly are cores of GMAs. By comparing with H-alpha and Pa-alpha images, most of these cores are found to have nearby star forming regions. We thus propose an evolutionary scenario for the interstellar medium, in which smaller molecular clouds collide to form smooth GMAs at spiral arm regions and then star formation is triggered in the GMA cores. Our new CO data have revealed the internal structure of GMAs at GMC scales, finding the most massive substructures on the downstream side of the arm in close association with the brightest H II regions.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا