ترغب بنشر مسار تعليمي؟ اضغط هنا

We present a new package for joint deconvolution of ALMA 12m, 7m, and Total Power (TP) data, dubbed ``Total Power Map to Visibilities (TP2VIS). It converts a TP (single-dish) map into visibilities on the CASA platform, which can be input into deconvo lvers (e.g., CLEAN) along with 12m and 7m visibilities. A manual is presented in the Github repository (https://github.com/tp2vis/distribute). Combining data from the different ALMA arrays is a driver for a number of science topics, namely those that probe size scales of extended and compact structures simultaneously. We test TP2VIS using model images, one with a single Gaussian and another that mimics the internal structures of giant molecular clouds. The result shows that the better uv coverage with TP2VIS visibilities helps the deconvolution process and reproduces the model image within errors of only 5% over two orders of magnitude in flux.
The outskirts of galaxies offer extreme environments where we can test our understanding of the formation, evolution, and destruction of molecules and their relationship with star formation and galaxy evolution. We review the basic equations that are used in normal environments to estimate physical parameters like the molecular gas mass from CO line emission and dust continuum emission. Then we discuss how those estimates may be affected when applied to the outskirts, where the average gas density, metallicity, stellar radiation field, and temperature may be lower. We focus on observations of molecular gas in the outskirts of the Milky Way, extragalactic disk galaxies, early-type galaxies, groups, and clusters. The scientific results show the versatility of molecular gas, as it has been used to trace Milky Way spiral arms out to a galactocentric radius of 15 kpc, to study star formation in extended ultraviolet disk galaxies, to probe galaxy interactions in polar ring S0 galaxies, and to investigate ram pressure stripping in clusters. We highlight the physical stimuli that accelerate the formation of molecular gas, including internal processes such as spiral arm compression and external processes such as interactions.
Theoretical studies on the response of interstellar gas to a gravitational potential disc with a quasi-stationary spiral arm pattern suggest that the gas experiences a sudden compression due to standing shock waves at spiral arms. This mechanism, cal led a galactic shock wave, predicts that gas spiral arms move from downstream to upstream of stellar arms with increasing radius inside a corotation radius. In order to investigate if this mechanism is at work in the grand-design spiral galaxy M51, we have measured azimuthal offsets between the peaks of stellar mass and gas mass distributions in its two spiral arms. The stellar mass distribution is created by the spatially resolved spectral energy distribution fitting to optical and near infrared images, while the gas mass distribution is obtained by high-resolution CO and HI data. For the inner region (r < 150), we find that one arm is consistent with the galactic shock while the other is not. For the outer region, results are less certain due to the narrower range of offset values, the weakness of stellar arms, and the smaller number of successful offset measurements. The results suggest that the nature of two inner spiral arms are different, which is likely due to an interaction with the companion galaxy.
191 - Jin Koda 2016
We analyze radial and azimuthal variations of the phase balance between the molecular and atomic ISM in the Milky Way. In particular, the azimuthal variations -- between spiral arm and interarm regions -- are analyzed without any explicit definition of spiral arm locations. We show that the molecular gas mass fraction, i.e., fmol=H2/ (HI+H2) in mass, varies predominantly in the radial direction: starting from ~100% at the center, remaining ~>50% (~>60%) to R~6kpc, and decreasing to ~10-20% (~50%) at R=8.5 kpc when averaged over the whole disk thickness (in the mid plane). Azimuthal, arm-interarm variations are secondary: only ~20%, in the globally molecule-dominated inner MW, but becoming larger, ~40-50%, in the atom-dominated outskirts. This suggests that in the inner MW, the gas stays highly molecular (fmol>50%) as it goes from an interarm region, into a spiral arm, and back into the next interarm region. Stellar feedback does not dissociate molecules much, and the coagulation and fragmentation of molecular clouds dominate the evolution of the ISM at these radii. The trend differs in the outskirts, where the gas phase is globally atomic (fmol<50%). The HI and H2 phases cycle through spiral arm passage there. These different regimes of ISM evolution are also seen in external galaxies (e.g., LMC, M33, and M51). We explain the radial gradient of fmol by a simple flow continuity model. The effects of spiral arms on this analysis are illustrated in Appendix.
We report development of a simple and affordable radio interferometer suitable as an educational laboratory experiment. With the increasing importance of interferometry in astronomy, the lack of educational interferometers is an obstacle to training the future generation of astronomers. This interferometer provides the hands-on experience needed to fully understand the basic concepts of interferometry. The design of this interferometer is based on the Michelson & Pease stellar optical interferometer, but operates at a radio wavelength (~11 GHz; ~2.7cm); thus the requirement for optical accuracy is much less stringent. We utilize a commercial broadcast satellite dish and feedhorn. Two flat side mirrors slide on a ladder, providing baseline coverage. This interferometer resolves and measures the diameter of the Sun, a nice daytime experiment which can be carried out even in marginal weather (i.e., partial cloud cover). Commercial broadcast satellites provide convenient point sources for comparison to the Suns extended disk. We describe the mathematical background of the adding interferometer, the design and development of the telescope and receiver system, and measurements of the Sun. We present results from a students laboratory report.
223 - Hsi-An Pan 2015
In this work, we investigate the molecular gas and star formation properties in the barred spiral galaxy NGC 6946 using multiple molecular lines and star formation tracers. High-resolution image (100 pc) of $^{13}$CO (1-0) is created by single dish N RO45 and interferometer CARMA for the inner 2 kpc disk, which includes the central region (nuclear ring and bar) and the offset ridges of the primary bar. Single dish HCN (1-0) observations were also made to constrain the amount of dense gas. Physical properties of molecular gas are inferred by (1) the Large Velocity Gradient (LVG) calculations using our observations and archival $^{12}$CO (1-0), $^{12}$CO(2-1) data, (2) dense gas fraction suggested by HCN to $^{12}$CO (1-0) luminosity ratio, and (3) infrared color. The results show that the molecular gas in the central region is warmer and denser than that of the offset ridges. Dense gas fraction of the central region is similar with that of LIRGs/ULIRGs, while the offset ridges are close to the global average of normal galaxies. The coolest and least dense region is found in a spiral-like structure, which was misunderstood to be part of the southern primary bar in previous low-resolution observations. Star formation efficiency (SFE) changes by ~ 5 times in the inner disk. The variation of SFE agrees with the prediction in terms of star formation regulated by galactic bar. We find a consistency between star-forming region and the temperature inferred by the infrared color, suggesting that the distribution of sub-kpc scale temperature is driven by star formation.
102 - Jin Koda 2015
We report the discovery of 854 ultra diffuse galaxies (UDGs) in the Coma cluster using deep R band images, with partial B, i, and Halpha band coverage, obtained with the Subaru telescope. Many of them (332) are Milky Way-sized with very large effecti ve radii of r_e>1.5kpc. This study was motivated by the recent discovery of 47 UDGs by van-Dokkum et al. (2015); our discovery suggests >1,000 UDGs after accounting for the smaller Subaru field. The new UDGs show a distribution concentrated around the cluster center, strongly suggesting that the great majority are (likely longtime) cluster members. They are a passively evolving population, lying along the red sequence in the CM diagram with no Halpha signature. Star formation was, therefore, quenched in the past. They have exponential light profiles, effective radii re ~ 800 pc- 5 kpc, effective surface brightnesses mu_e(R)=25-28 mag arcsec-2, and stellar masses ~1x10^7 - 5x10^8Msun. There is also a population of nucleated UDGs. Some MW-sized UDGs appear closer to the cluster center than previously reported; their survival in the strong tidal field, despite their large sizes, possibly indicates a large dark matter fraction protecting the diffuse stellar component. The indicated baryon fraction ~<1% is less than the cosmic average, and thus the gas must have been removed from the possibly massive dark halo. The UDG population appears to be elevated in the Coma cluster compared to the field, indicating that the gas removal mechanism is related primarily to the cluster environment.
We report the discovery of a new dwarf galaxy (NGC6503-d1) during the Subaru extended ultraviolet (XUV) disk survey. It is a likely companion of the spiral galaxy NGC6503. The resolved images, in B, V, R, i, and Halpha, show an irregular appearance d ue to bright stars with underlying, smooth and unresolved stellar emission. It is classified as the transition type (dIrr/dSph). Its structural properties are similar to those of the dwarfs in the Local Group, with a V absolute magnitude ~ -10.5, half-light radius ~400 pc, and central surface brightness ~25.2. Despite the low stellar surface brightness environment, one HII region was detected, though its Halpha luminosity is low, indicating an absence of any appreciable O-stars at the current epoch. The presence of multiple stellar populations is indicated by the color-magnitude diagram of ~300 bright resolved stars and the total colors of the dwarf, with the majority of its total stellar mass ~4x10^6 Msun in an old stellar population.
We report a super-linear correlation for the star formation law based on new CO($J$=1-0) data from the CARMA and NOBEYAMA Nearby-galaxies (CANON) CO survey. The sample includes 10 nearby spiral galaxies, in which structures at sub-kpc scales are spat ially resolved. Combined with the star formation rate surface density traced by H$alpha$ and 24 $mu$m images, CO($J$=1-0) data provide a super-linear slope of $N$ = 1.3. The slope becomes even steeper ($N$ = 1.8) when the diffuse stellar and dust background emission is subtracted from the H$alpha$ and 24 $mu$m images. In contrast to the recent results with CO($J$=2-1) that found a constant star formation efficiency (SFE) in many spiral galaxies, these results suggest that the SFE is not independent of environment, but increases with molecular gas surface density. We suggest that the excitation of CO($J$=2-1) is likely enhanced in the regions with higher star formation and does not linearly trace the molecular gas mass. In addition, the diffuse emission contaminates the SFE measurement most in regions where star formation rate is law. These two effects can flatten the power law correlation and produce the apparent linear slope. The super linear slope from the CO($J$=1-0) analysis indicates that star formation is enhanced by non-linear processes in regions of high gas density, e.g., gravitational collapse and cloud-cloud collisions.
We resolve 182 individual giant molecular clouds (GMCs) larger than 2.5 $times$ 10$^{5}$ Msun in the inner disks of five large nearby spiral galaxies (NGC 2403, NGC 3031, NGC 4736, NGC 4826, and NGC 6946) to create the largest such sample of extragal actic GMCs within galaxies analogous to the Milky Way. Using a conservatively chosen sample of GMCs most likely to adhere to the virial assumption, we measure cloud sizes, velocity dispersions, and $^{12}$CO (J=1-0) luminosities and calculate cloud virial masses. The average conversion factor from CO flux to H$_{2}$ mass (or xcons) for each galaxy is 1-2 xcounits, all within a factor of two of the Milky Way disk value ($sim$2 xcounits). We find GMCs to be generally consistent within our errors between the galaxies and with Milky Way disk GMCs; the intrinsic scatter between clouds is of order a factor of two. Consistent with previous studies in the Local Group, we find a linear relationship between cloud virial mass and CO luminosity, supporting the assumption that the clouds in this GMC sample are gravitationally bound. We do not detect a significant population of GMCs with elevated velocity dispersions for their sizes, as has been detected in the Galactic center. Though the range of metallicities probed in this study is narrow, the average conversion factors of these galaxies will serve to anchor the high metallicity end of metallicity-xco trends measured using conversion factors in resolved clouds; this has been previously possible primarily with Milky Way measurements.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا