ترغب بنشر مسار تعليمي؟ اضغط هنا

We compute Cayley graphs and automorphism groups for all finite $n$-quandles of two-bridge and torus knots and links, as well as torus links with an axis.
151 - Colin Adams 2017
Every link in the 3-sphere has a projection to the plane where the only singularities are pairwise transverse triple points. The associated diagram, with height information at each triple point, is a triple-crossing diagram of the link. We give a set of diagrammatic moves on triple-crossing diagrams analogous to the Reidemeister moves on ordinary diagrams. The existence of n-crossing diagrams for every n>1 allows the definition of the n-crossing number. We prove that for any nontrivial, nonsplit link, other than the Hopf link, its triple-crossing number is strictly greater than its quintuple-crossing number.
56 - Adam Boocher 2007
A Lissajous knot is one that can be parameterized by a single cosine function in each coordinate. Lissajous knots are highly symmetric, and for this reason, not all knots are Lissajous. We prove several theorems which allow us to place bounds on the number of Lissajous knot types with given frequencies and to efficiently sample all possible Lissajous knots with a given set of frequencies. In particular, we systematically tabulate all Lissajous knots with small frequencies and as a result substantially enlarge the tables of known Lissajous knots. A Fourier (i, j, k) knot is similar to a Lissajous knot except that each coordinate is now described by a finite sum of i, j, and k cosine functions respectively. According to Lamm, every knot is a Fourier-(1,1,k) knot for some k. By randomly searching the set of Fourier-(1,1,2) knots we find that all 2-bridge knots up to 14 crossings are either Lissajous or Fourier-(1,1,2) knots. We show that all twist knots are Fourier-(1,1,2) knots and give evidence suggesting that all torus knots are Fourier-(1,1,2) knots. As a result of our computer search, several knots with relatively small crossing numbers are identified as potential counterexamples to interesting conjectures.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا