ترغب بنشر مسار تعليمي؟ اضغط هنا

We present photometry of the large scale environments of a sample of twelve broad line AGN with $0.06 < z < 0.37$ from deep images in the SDSS $u$, $g$, $r$, and $i$ filters taken with the 90Prime prime focus camera on the Steward Observatory Bok Tel escope. We measure galaxy clustering around these AGN using two standard techniques: correlation amplitude (B$_{gq}$) and the two point correlation function. We find average correlation amplitudes for the 10 radio quiet objects in the sample equal to (9$pm$18, 144$pm$114, -39$pm$56, 295$pm$260) Mpc$^{1.77}$ in ($u$, $g$, $r$, $i$), all consistent with the expectation from galaxy clustering. Using a ratio of the galaxy-quasar cross-correlation function to the galaxy autocorrelation function, we calculate the relative bias of galaxies and AGN, $b_{gq}$. The bias in the $u$ band, $b_{gq}=3.08pm0.51$ is larger compared to that calculated in the other bands, but it does not correlate with AGN luminosity, black hole mass, or AGN activity via the luminosity of the [OIII] emission line. Thus ongoing nuclear accretion activity is not reflected in the large scale environments from $sim$10 h$^{-1}$ kpc to $sim$0.5 h$^{-1}$ Mpc and may indicate a non-merger mode of AGN activity and/or a significant delay between galaxy mergers and nuclear activity in this sample of mostly radio quiet quasars.
Measuring rest-frame ultraviolet rotational transitions from the Lyman and Werner bands in absorption against a bright background continuum is one of the few ways to directly measure molecular hydrogen (H2). Here we report the detection of Lyman-Wern er absorption from H2 at z=0.56 in a sub-damped Ly-alpha system with neutral hydrogen column density N(HI) = 10^(19.5 +/- 0.2) cm^-2. This is the first H2 system analysed at a redshift < 1.5 beyond the Milky Way halo. It has a surprisingly high molecular fraction: log f(H2) > -1.93 +/- 0.36 based on modelling the line profiles, with a robust model-independent lower limit of f(H2) > 10^-3. This is higher than f(H2) values seen along sightlines with similar N(HI) through the Milky Way disk and the Magellanic clouds. The metallicity of the absorber is 0.19 +0.21 -0.10 solar, with a dust-to-gas ratio < 0.36 times the value in the solar neighbourhood. Absorption from associated low-ionisation metal transitions such as OI and FeII is observed in addition to OVI. Using Cloudy models we show that there are three phases present; a ~100 K phase giving rise to H2, a ~10^4 K phase where most of the low-ionisation metal absorption is produced; and a hotter phase associated with OVI. Based on similarities to high velocity clouds in the Milky Way halo showing H2 and the presence of two nearby galaxy candidates with impact parameters of ~10 kpc, we suggest that the absorber may be produced by a tidally-stripped structure similar to the Magellanic Stream.
We examine the relationship between galaxies and the intergalactic medium at z < 1 using a group of three closely spaced background QSOs with z_em ~1 observed with the Hubble Space Telescope. Using a new grouping algorithm, we identify groups of gala xies and absorbers across the three QSO sightlines that may be physically linked. There is an excess number of such groups compared to the number we expect from a random distribution of absorbers at a confidence level of 99.9%. The same search is performed with mock spectra generated using a hydrodynamic simulation, and we find the vast majority of such groups arise in dense regions of the simulation. We find that at z<0.5, groups in the simulation generally trace the large-scale filamentary structure as seen in the projected 2-d distribution of the HI column density in a ~30 h^-1 Mpc region. We discover a probable sub-damped Lyman-alpha system at z=0.557 showing strong, low-ionisation metal absorption lines. Previous analyses of absorption across the three sightlines attributed these metal lines to HI. We show that even when the new line identifications are taken into account, evidence remains for planar structures with scales of ~1 Mpc absorbing across the three sightlines. We identify a galaxy at z=0.2272 with associated metal absorption in two sightlines, each 200 kpc away. By constraining the star formation history of the galaxy, we show the gas causing this metal absorption may have been enriched and ejected by the galaxy during a burst of star formation 2 Gyr ago.
In this work we use a sample of 318 radio-quiet quasars (RQQ) to investigate the dependence of the ratio of optical/UV flux to X-ray flux, alpha_ox, and the X-ray photon index, Gamma_X, on black hole mass, UV luminosity relative to Eddington, and X-r ay luminosity relative to Eddington. Our sample is drawn from the SDSS, with X-ray data from ROSAT and Chandra, and optical data mostly from the SDSS; 153 of these sources have estimates of Gamma_X from Chandra. We estimate M_BH using standard estimates derived from the Hbeta, Mg II, and C IV broad emission lines. Our sample spans a broad range in black hole mass (10^6 < M_BH / M_Sun < 10^10) and redshift (z < 4.8). We find that alpha_ox increases with increasing M_BH and L_UV / L_Edd, and decreases with increasing L_X / L_Edd. In addition, we confirm the correlation seen in previous studies between Gamma_X and M_BH and both L_UV / L_Edd and L_X / L_Edd; however, we also find evidence that the dependence of Gamma_X of these quantities is not monotonic, changing sign at M_BH ~ 3 x 10^8 M_Sun. We argue that the alpha_ox correlations imply that the fraction of bolometric luminosity emitted by the accretion disk, as compared to the corona, increases with increasing accretion rate relative to Eddington. In addition, we argue that the Gamma_X trends are caused by a dependence of X-ray spectral index on accretion rate. We discuss our results within the context of accretion models with comptonizing corona, and discuss the implications of the alpha_ox correlations for quasar feedback. To date, this is the largest study of the dependence of RQQ X-ray parameters on black hole mass and related quantities, and the first to attempt to correct for the large statistical uncertainty in the broad line mass estimates.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا