ترغب بنشر مسار تعليمي؟ اضغط هنا

Instance segmentation on point clouds is a fundamental task in 3D scene perception. In this work, we propose a concise clustering-based framework named HAIS, which makes full use of spatial relation of points and point sets. Considering clustering-ba sed methods may result in over-segmentation or under-segmentation, we introduce the hierarchical aggregation to progressively generate instance proposals, i.e., point aggregation for preliminarily clustering points to sets and set aggregation for generating complete instances from sets. Once the complete 3D instances are obtained, a sub-network of intra-instance prediction is adopted for noisy points filtering and mask quality scoring. HAIS is fast (only 410ms per frame) and does not require non-maximum suppression. It ranks 1st on the ScanNet v2 benchmark, achieving the highest 69.9% AP50 and surpassing previous state-of-the-art (SOTA) methods by a large margin. Besides, the SOTA results on the S3DIS dataset validate the good generalization ability. Code will be available at https://github.com/hustvl/HAIS.
Recent advances in self-supervised learning have experienced remarkable progress, especially for contrastive learning based methods, which regard each image as well as its augmentations as an individual class and try to distinguish them from all othe r images. However, due to the large quantity of exemplars, this kind of pretext task intrinsically suffers from slow convergence and is hard for optimization. This is especially true for small scale models, which we find the performance drops dramatically comparing with its supervised counterpart. In this paper, we propose a simple but effective distillation strategy for unsupervised learning. The highlight is that the relationship among similar samples counts and can be seamlessly transferred to the student to boost the performance. Our method, termed as BINGO, which is short for textbf{B}ag of textbf{I}nstatextbf{N}ces atextbf{G}gregatitextbf{O}n, targets at transferring the relationship learned by the teacher to the student. Here bag of instances indicates a set of similar samples constructed by the teacher and are grouped within a bag, and the goal of distillation is to aggregate compact representations over the student with respect to instances in a bag. Notably, BINGO achieves new state-of-the-art performance on small scale models, emph{i.e.}, 65.5% and 68.9% top-1 accuracies with linear evaluation on ImageNet, using ResNet-18 and ResNet-34 as backbone, respectively, surpassing baselines (52.5% and 57.4% top-1 accuracies) by a significant margin. The code will be available at url{https://github.com/haohang96/bingo}.
Transformers have offered a new methodology of designing neural networks for visual recognition. Compared to convolutional networks, Transformers enjoy the ability of referring to global features at each stage, yet the attention module brings higher computational overhead that obstructs the application of Transformers to process high-resolution visual data. This paper aims to alleviate the conflict between efficiency and flexibility, for which we propose a specialized token for each region that serves as a messenger (MSG). Hence, by manipulating these MSG tokens, one can flexibly exchange visual information across regions and the computational complexity is reduced. We then integrate the MSG token into a multi-scale architecture named MSG-Transformer. In standard image classification and object detection, MSG-Transformer achieves competitive performance and the inference on both GPU and CPU is accelerated. The code will be available at https://github.com/hustvl/MSG-Transformer.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا